
DSC 40B - Homework 03
Due: Wednesday, April 24

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 p.m.

Problem 1.

Determine the worst case time complexity of each of the recursive algorithms below. In each case, state the
recurrence relation describing the runtime. Solve the recurrence relation, either by unrolling it or showing
that it is the same as a recurrence we have encountered in lecture.

a) import math

def find_max(numbers):

"""Given a list, returns the largest number in the list.

Remember: slicing a list performs a copy, and so takes linear time.

"""

n = len(numbers)

if n == 0:

return 0

if n == 1:

return numbers[0]

mid_left = math.floor(n / 3)

mid_right = math.floor(2n / 3)

return max(

find_max(numbers[:mid_left]),

find_max(numbers[mid_left:mid_right])

find_max(numbers[mid_right:])

)

b) import math

def find_max_again(numbers, start, stop):

"""Returns the max of numbers[start:stop]"""

if stop <= start:

return 0

if stop - start == 1:

return numbers[start]

middle = math.floor((start + stop) / 2)

left_max = find_max_again(numbers, start, middle)

right_max = find_max_again(numbers, middle, stop)

return max(left_max, right_max)

c) In this problem, remember that // performs flooring division, so the result is always an integer. For
example, 1//2 is zero. random.randint(a,b) returns a random integer in [a, b) in constant time.
Note that you are asked to determine the worst-case time complexity of the following algorithm.

import random

1

def foo(n):

"""This doesn't do anything meaningful."""

if n == 0:

return 1

generate n random integers in the range [0, n)

numbers = []

i = 0

while i < n:

i = i + 2

number = random.randint(1, n)

numbers.append(number)

x = sum(numbers)

if x is even:

return foo(n//2) / x**.5

else

return foo(n//2) * x

Problem 2.

A rotated sorted array is an array that is the result of taking a sorted array and moving a contiguous section
from the front of the array to the back of the array. For example, the array [5,6,7,1,2,3,4] is a rotated
sorted array: it is the result of taking the sorted array [1,2,3,4,5,6,7] and moving the first 4 elements,
[1,2,3,4], to the back of the array. Sorted arrays are also rotated sorted arrays, technically speaking, since
you can think of a sorted array as the result of taking the sorted array and moving the first 0 elements to
the back.

For example, all rotated version of [1,2,3,4,5] is the following:

• [1,2,3,4,5]

• [5,1,2,3,4]

• [4,5,1,2,3]

• [3,4,5,1,2]

• [2,3,4,5,1]

The function below attempts to find the value of the minimum element in a rotated sorted array. It is given
the array arr and the indices start and stop which indicate the range of the array that should be searched.
You may assume the numbers in arr are unique.
Fill in the blanks to make the function work correctly. Your function should have time complexity Θ(log n).

import math

def find_min(arr, start, stop):

"""Searches arr[start:stop] for the samllest element.

Assumes arr is a rotated sorted array.

"""

if ------: # write down appropriate base case;

return -----

you may include more than one base case if needed

2

mid = math.floor((stop + start) / 2)

if ----------------:

return arr[---------]

elif ------------------ :

return find_min(----------------)

else:

return find_min(----------------)

Programming Problem 1.

In a file named swap_sum.py, write a function named swap_sum(A, B) which, given two sorted integer
arrays A and B, returns a pair of indices (A_i, B_i) – one from A and one from B – such that after
swapping these indices, sum(B) == sum(A) + 10. If more than one pair is found, return any one of them.
If such a pair does not exist, return None.

For example, suppose A = [1, 6, 50] and B = [4, 24, 35]. Swapping 6 and 4 results in arrays (1, 4, 50)
and (6, 24, 35); the elements of each list sum to 55 and 65. Thus, you must return (1, 0) as you are expected
to return the indices.

Your algorithm should run in time Θ(n), where n is the size of the larger of the two lists. Your code should
not modify A and B.

This is a coding problem, and you’ll submit your swap_sum.py file to the Gradescope autograder assignment
named “Homework 03 - Programming Problem 01”. The public autograder will test to make sure your code
runs without error on a simple test, so be sure to check its output! After the deadline a more thorough set
of tests will be used to grade your submission.

3

