
DSC 40B - Super Homework
Due: Tuesday, June 11

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Unless otherwise noted by the problem’s instructions, show your work or provide some
justification for your answer. Homeworks are due via Gradescope at 11:59 p.m.

Note: slip days are permitted for the Super Homework.

Problem 1.

In this problem you will be asked to list the edges in the minimum spanning tree of the graph below in the
order that they are added by either Prim’s algorithm or Kruskal’s algorithm.

In order to simplify grading, please write an edge with the smaller node first. For example: (u3, u7) instead
of (u7, u3). Also, when writing an edge, make sure to write the edge as a pair of nodes, not the weight of
the edge. Thanks!

a) Suppose Prim’s algorithm is run on the above graph, using node u1 as the starting node. List the
edges of the resulting minimum spanning tree computed in the order that they are added by the
algorithm.

b) Suppose Kruskal’s algorithm is run on the graph above. List the edges of the resulting minimum
spanning tree in the order that they are added by the algorithm.

Problem 2.

The picture below shows a set of points in 2-dimensional space. A grid is provided so that you can compute
the distance between points; each grid cell is 1 unit wide and 1 unit tall. You may assume that each data
point is placed on a grid intersection.
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Suppose a weighted distance graph G is constructed from this data set (recall that a distance graph is a
complete graph whose nodes represent points in space, and whose edges are weighted by the distance between
its endpoints). Then suppose that a minimum spanning tree is computed for G. What will be the weight of
the largest edge in this minimum spanning tree?

Problem 3.

Suppose we are given a undirected weighted graph G = (V,E;w), where w : E → R is the map to assign a
weight w(e) to each edgee ∈ E. Let T ∗ be a minimum spanning tree of G.

a) Now let G1 = (V,E;w1) be a modified version of G: In particular, G1 share the same vertex set and
edge set as G. The only difference lies in the edge weights, where for any edge e ∈ E, the new weight
doubles the previous weight w(e); that is, w1(e) = 2w(e).

(True or False): The tree T ∗ is still a minimum spanning tree for G1 as well. You do not need to
provide a justification.

b) Now let G2 = (V,E;w2) be another modified version of G: In particular, G1 share the same vertex
set and edge set as G. The only difference lies in the edge weights, where for any edge e ∈ E, the new
weight equals the previous weight w(e) + 2; that is, w2(e) = w(e) + 2.

(True or False): The tree T ∗ is still a minimum spanning tree for G2 as well. You do not need to
provide a justification.

c) Let s ∈ V be a source node. Let T̂ be a shortest path tree of G from the source s. Consider the
modified graph G2 defined above.

(True or False): The tree T̂ is a shortest path tree for G2 from the source s as well.

Programming Problem 1.

In lecture, we saw that Kruskal’s algorithm can be used to cluster a weighted graph. The name for this
approach is single linkage clustering.

In a file named slc.py, write a function slc(graph, d, k) which accepts the following arguments:

• graph: An instance of dsc40graph.UndirectedGraph.

• d: A function of one argument: a tuple containing a pair of nodes. It returns the distance (or dissimi-
larity) between them. See the example below.

• k: A positive integer describing the number of clusters which should be found.
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The function should perform single linkage clustering using Kruskal’s algorithm and it should return a
frozenset of k frozensets, each representing a cluster of the graph.

Example:

>>> g = dsc40graph.UndirectedGraph()

>>> edges = [('a', 'b'), ('a', 'c'), ('c', 'd'), ('b', 'd')]

>>> for edge in edges: g.add_edge(*edge)

>>> def d(edge):

... u, v = sorted(edge)

... return {

... ('a', 'b'): 1,

... ('a', 'c'): 4,

... ('b', 'd'): 3,

... ('c', 'd'): 2,

... }[(u, v)]

>>> slc(g, d, 2)

frozenset({frozenset({'a', 'b'}), frozenset({'c', 'd'})})

Note: to implement Kruskal’s algorithm, you’ll need an implementation of a Disjoint Set Forest data struc-
ture. We’ve uploaded a simple one here: https://gist.github.com/eldridgejm/983d6ce03a82bf295599e9880ef02bab

You can copy and paste this into slc.py, or put it in a separate file that is imported; if you do this, make
sure to upload that file alongside slc.py.

Programming Problem 2.

Let data be a list of n unique real numbers. Furthermore, suppose that each number in data is assigned a
color – it is either 'red' or 'blue'. Let colors be a list of n strings, such that colors[i] gives the color
of data[i]. In all parts of this problem, you may assume for simplicity that there is at least one data point
of each color.

a) To begin, suppose that all of the blue points are less than all of the red points. In a file named
min_ell_theta.py, write an efficient function called learn_theta(data, colors) which takes in
two arguments – the lists data and colors as described above – and returns a single number θ such
that all of the blue points are ≤ θ and all of the red points are > θ, as is depicted in the picture below.
You may not assume that data is sorted. The time complexity of your algorithm should be optimal.
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Now suppose that a small number of the red points are less than some blue points – that is, there is some
overlap, as shown below. Assume for simplicity that the largest data point is red.
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We wish to find a real number θ which “best” separates the blue points and red points. Clearly the points
cannot be separated perfectly. Instead, we define a loss function L(θ) which counts the number of points
which are on the wrong side of θ. More precisely:

L(θ) = (# of red points ≤ θ) + (# of blue points > θ)
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The loss of the θ shown above is 2, since one red point is to the left of θ and one blue point is to the right.
Our goal is to design an algorithm for finding a minimizer of L(θ). This is a simple instance of the machine
learning task of classification.

b) Also in min_ell_theta.py, write a function named compute_ell(data, colors, theta) which
takes in lists data and colors as described above, as well as a floating-point number, theta. It
should return the loss at theta as a floating-point number. Your algorithm should have the best
possible time complexity.

c) Also in min_ell_theta.py, write a function named minimize_ell(data, colors) which takes in
data and colors and returns a floating-point number which minimizes the loss L for that particular
data set. Your algorithm should have quadratic time complexity. You may assume for simplicity that
the smallest data point is blue1.

d) Now assume that data is sorted (and colors[i] is the color of data[i]). In the file called min_ell_theta.py,
write a function minimize_ell_sorted(data, colors) which returns a minimizer θ in linear time.
Your code should satisfy the loop invariant: “After the αth iteration, blue_gt_theta is the number
of blue points which are greater than data[α− 1].”

For simplicity, suppose that exactly n/2 of the data points are 'red', and n/2 are 'blue'.

1Otherwise it is possible (given a special data set) for the loss to be minimized at some θ to the left of all of the data.
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