
Lecture 1 | Part 1

Administrative Stuff

Syllabus
▶ All course materials, the syllabus, etc., can be
found at course website1.

1https://akbarrafiey.github.io/DSC40B-SP24/

https://akbarrafiey.github.io/DSC40B-SP24/
https://akbarrafiey.github.io/DSC40B-SP24/

Syllabus
▶ All course materials, the syllabus, etc., can be
found at course website.

▶ News:
▶ No discussion tomorrow.

https://akbarrafiey.github.io/DSC40B-SP24/

Syllabus
▶ All course materials, the syllabus, etc., can be
found at course website.

▶ News:
▶ No discussion tomorrow.

▶ Lab 01 posted, due on Sunday.

https://akbarrafiey.github.io/DSC40B-SP24/

Lecture 1 | Part 2

What is DSC 40B?

Recall DSC 40A...

▶ How do we formalize learning from data?

▶ How do we turn it into something a computer
can do?

Example 1: Minimize Absolute Error
▶ Goal: summarize a collection of numbers,
𝑥1, … , 𝑥𝑛:

▶ Idea: find number 𝑀 minimizing the total
absolute error:

𝑛
∑
𝑖=1
|𝑀 − 𝑥𝑖|

Example 1: Minimize Absolute Error
▶ Solution: The median of 𝑥1, … , 𝑥𝑛.

The End

The End?

Example 1: Minimize Absolute Error
▶ How do we actually compute the median?

Exercise
Suppose you’re on a desert island with no internet
connection, but a basic installation of Python. For
some reason, you need to compute the median of
a million numbers to get off of the island.

How do you do it?

Main Idea
Our work doesn’t stop once we solve the math
problem (a la DSC 40A).

We still need to compute the answer.

We need an algorithm.

Main Idea
Our work doesn’t stop once we solve the math
problem (a la DSC 40A).

We still need to compute the answer.

We need an algorithm.

More than that, we need an implementation of that
algorithm (that is: code).

Example 2: Least Squares Regression

Example 2: Least Squares Regression

The End

(𝑋𝑇𝑋)�⃗� = 𝑋𝑇 �⃗�

Wait...
▶ We actually need to compute the answer...

▶ We need an algorithm.

An Algorithm?
▶ Let’s say we have numpy installed.

▶ It provides an implementation of an algorithm:

>>> import numpy as np
>>> w = np.linalg.solve(X.T @ X, X.T @ b)

But...
▶ Will it work for 1,000,000 data points?

▶ What about for 1,000,000 features?

Main Idea
Having an algorithm isn’t enough – we need to
know about its performance. Otherwise, it may be
useless for our particular problem.

Lecture 1 | Part 3

Example: Clustering

Clustering
▶ Given a pile of data, discover similar groups.

▶ Examples:
▶ Find political groups within social network data.
▶ Given data on COVID-19 symptoms, discover groups
that are affected differently.

▶ Find the similar regions of an image (segmentation).

▶ Most useful when data is high dimensional...

Example: Old Faithful

Example: Old Faithful

Example: Old Faithful

Clustering
▶ Goal: for computer to identify the two groups in
the data.

▶ A clustering is an assignment of a color to each
data point.

▶ There are many possible clusterings.

Clustering
▶ How do we turn this into something a computer
can do?

▶ DSC 40A says: “Turn it into an optimization
problem”.

▶ Idea: design a way of quantifying the “goodness”
of a clustering; find the best.
▶ Design a loss function.
▶ There are many possibilities, tradeoffs!

Exercise
What’s a good loss function for this problem? It
should assign small loss to a good clustering.

Quantifying Separation

Idea: Define the “separation” 𝛿(𝐵, 𝑅) to be the
smallest distance between a blue point and red point.

Quantifying Separation

Idea: Define the “separation” 𝛿(𝐵, 𝑅) to be the
smallest distance between a blue point and red point.

The Problem
▶ Given: 𝑛 points ⃗𝑥(1), … , ⃗𝑥(𝑛).

▶ Find: an assignment of points to clusters R and B
so as to maximize 𝛿(𝐵, 𝑅).

DSC 40A: “The End”

DSC 40A: “The End”

DSC 40B: “The Beginning”

The “Brute Force” Algorithm
▶ There are finitely-many possible clusterings.

▶ Algorithm: Try each possible clustering, return
that with largest separation, 𝛿(𝐵, 𝑅).

▶ This is called a brute force algorithm.

best_separation = -float('inf') # Python for ”infinity”
best_clustering = None

for clustering in all_clusterings(data):
sep = calculate_separation(clustering)
if sep > best_separation:

best_separation = sep
best_clustering = clustering

print(best_clustering)

The Algorithm
▶ We have an algorithm!

▶ But how long will this take to run if there are 𝑛
points?

▶ How many clusterings of 𝑛 things are there?

Exercise
How many ways are there of assigning R or B to 𝑛
points?

Solution
▶ Two choices 2 for each object: 2 × 2 × … × 2 = 2𝑛.

2Small nitpick: actual color doesn’t matter, 2𝑛−1.

Time
▶ Suppose it takes at least 1 nanosecond3 to check
a single clustering.
▶ One billionth of a second.
▶ Time it takes for light to travel 1 foot.

▶ If there are 𝑛 points, it will take at least 2𝑛
nanoseconds to check all clusterings.

3This is an extremely optimistic estimate. It’s actually much slower, and
scales with 𝑛.

Time Needed

𝑛 Time
1 1 nanosecond

Time Needed

𝑛 Time
1 1 nanosecond
10 1 microsecond

Time Needed

𝑛 Time
1 1 nanosecond
10 1 microsecond
20 1 millisecond

Time Needed

𝑛 Time
1 1 nanosecond
10 1 microsecond
20 1 millisecond
30 1 second

Time Needed

𝑛 Time
1 1 nanosecond
10 1 microsecond
20 1 millisecond
30 1 second
40 18 minutes

Time Needed

𝑛 Time
1 1 nanosecond
10 1 microsecond
20 1 millisecond
30 1 second
40 18 minutes
50 13 days

Time Needed

𝑛 Time
1 1 nanosecond
10 1 microsecond
20 1 millisecond
30 1 second
40 18 minutes
50 13 days
60 36 years

Time Needed

𝑛 Time
1 1 nanosecond
10 1 microsecond
20 1 millisecond
30 1 second
40 18 minutes
50 13 days
60 36 years
70 37,000 years

Example: Old Faithful
▶ The Old Faithful data set has 270 points.

▶ Brute force algorithm will finish in 6 × 1064 years.

Example: Old Faithful
▶ The Old Faithful data set has 270 points.

▶ Brute force algorithm will finish in 6 × 1064 years.

Algorithm Design
▶ Often, most obvious algorithm is unusably slow.

▶ Does this mean our problem is too hard?
▶ Direct result of our choice of loss function.

▶ We’ll see an efficient solution by the end of the
quarter.

Algorithm Design
▶ Often, most obvious algorithm is unusably slow.

▶ Does this mean our problem is too hard?
▶ Direct result of our choice of loss function.

▶ We’ll see an efficient solution by the end of the
quarter.

Algorithm Design
▶ Often, most obvious algorithm is unusably slow.

▶ Does this mean our problem is too hard?
▶ Direct result of our choice of loss function.

▶ We’ll see an efficient solution by the end of the
quarter.

Main Idea
Just having an algorithm isn’t enough – it must
also be reasonably efficient. Otherwise, it might
be useless for our particular problem.

DSC 40B
▶ Assess the efficiency of algorithms.

▶ Understand why and how common algorithms
work.

▶ Develop faster algorithms using design
strategies and data structures.

Lecture 1 | Part 4

Measuring Efficiency by Timing

Efficiency
▶ Speed matters, especially with large data sets.

▶ An algorithm is only useful if it runs fast enough.
▶ That depends on the size of your data set.

▶ How do we measure the efficiency of code?

▶ How do we know if a method will be fast enough?

Scenario
▶ You’re building a least squares regression model
to predict a patient’s blood oxygen level.

▶ You’ve trained it on 1,000 people.

▶ You have a full data set of 100,000 people.

▶ How long will it take? How does it scale?

Example: Scaling
▶ Your code takes 5 seconds on 1,000 points.

▶ How long will it take on 100,000 data points?

▶ 5 seconds × 100 = 500 seconds?

▶ More? Less?

Coming Up
▶ We’ll answer this in coming lectures.

▶ Today: start with simpler algorithms for the
mean, median.

Approach #1: Timing
▶ How do we measure the efficiency of code?

▶ Simple: time it!

▶ Useful Jupyter tools: time and timeit

Disadvantages of Timing
1. Time depends on the computer.

2. Depends on the particular input, too.

3. One timing doesn’t tell us how algorithm scales.

Disadvantages of Timing
1. Time depends on the computer.

2. Depends on the particular input, too.

3. One timing doesn’t tell us how algorithm scales.

Disadvantages of Timing
1. Time depends on the computer.

2. Depends on the particular input, too.

3. One timing doesn’t tell us how algorithm scales.

Lecture 1 | Part 5

Measuring Efficiency by Counting Operations

Approach #2: Time Complexity
Analysis

▶ Determine efficiency of code without running it.

▶ Idea: find a formula for time taken as a function
of input size.

Advantages of Time Complexity
1. Doesn’t depend on the computer.

2. Reveals which inputs are “hard”, which are “easy”.

3. Tells us how algorithm scales.

Exercise
Write a function meanwhich takes in a NumPy array
of floats and outputs their mean.

def mean(numbers):
total = 0
n = len(numbers)
for x in numbers:

total += x
return total / n

Time Complexity Analysis
▶ How long does it take mean to run on an array of
size 𝑛? Call this 𝑇(𝑛).

▶ We want a formula for 𝑇(𝑛).

Counting Basic Operations
▶ Assume certain basic operations (like adding two
numbers) take a constant amount of time.
▶ x + y doesn’t take more time if numbers is bigger.
▶ So x + y takes “constant time”
▶ Compare to sum(numbers). Not a basic operation.

▶ Idea: Count the number of basic operations. This
is a measure of time.

Exercise
Which of the below array operations takes con-
stant time?
▶ accessing an element: arr[i]
▶ asking for the length: len(arr)
▶ finding the max: max(arr)

Basic Operations with Arrays
We’ll assume that these operations on NumPy arrays
take constant time.

▶ accessing an element: arr[i]

▶ asking for the length: len(arr)

Example
Time/exec. # of execs.

def mean(numbers):
total = 0
n = len(numbers)
for x in numbers:

total += x
return total / n

Example: mean
▶ Total time:

𝑇(𝑛) = 𝑐3(𝑛 + 1) + 𝑐4𝑛 + (𝑐1 + 𝑐2 + 𝑐5)
= (𝑐3 + 𝑐4)𝑛 + (𝑐1 + 𝑐2 + 𝑐3 + 𝑐5)

▶ “Forgetting” constants, lower-order terms with
“Big-Theta”: 𝑇(𝑛) = Θ(𝑛).

▶ Θ(𝑛) is the time complexity of the algorithm.

Main Idea
Forgetting constant, lower order terms allows us to
focus on how the algorithm scales, independent of
which computer we run it on.

Careful!
▶ Not always the case that a single line of code
takes constant time per execution!

Example
Time/exec. # of execs.

def mean_2(numbers):
total = sum(numbers)
n = len(numbers)
return total / n

Example: mean_2
▶ Total time:

𝑇(𝑛) = 𝑐1𝑛 + (𝑐0 + 𝑐2 + 𝑐3)

▶ “Forgetting” constants, lower-order terms with
“Big-Theta”: 𝑇(𝑛) = Θ(𝑛).

Exercise
Write an algorithm for finding the maximum of an
array of 𝑛 numbers. What is its time complexity?

Time/exec. # of execs.
def maximum(numbers):

current_max = -float('inf')
for x in numbers:

if x > current_max:
current_max = x

return current_max

Main Idea
Using Big-Theta allows us not to worry about ex-
actly how many times each line runs.

By the way...

From Peter Norvig’s essay, “Teach Yourself Programming in Ten Years”
http://norvig.com/21-days.html

http://norvig.com/21-days.html

Remaining Questions
▶ What if the code is more complex?

▶ For example, nested loops.

▶ What is this notation anyways?

▶ Next time in DSC 40B.

Remaining Questions
▶ What if the code is more complex?

▶ For example, nested loops.

▶ What is this notation anyways?

▶ Next time in DSC 40B.

