psc 4058

Thvetizaf Foundlatong ZL

Lecture 2 Part1

News

News

Lab 01 posted on Gradescope
Due Sunday @ 11:59 pm PST on Gradescope.

Homework 01 posted on website'
Due Wednesday @ 11:59 pm PST on Gradescope.
LaTeX template available.

"https://akbarrafiey.github.io/DSC40B-SP24/

Agenda

Analyzing nested loops.

What is © notation, really?

psc 408

Thanfe%ca/ Founolatong 7L

Lecture 2 Part 2

Nested Loops

Example 1: Influence Maximization

Example 1: Influence Maximization

Design an algorithm to solve the following:

Given the influence factor of n people, determine
the maximum influence achieved by selecting
any two of them?

sum of their influence factors is maximized

What is the time complexity of the brute force
solution?

Bonus: what is the best possible time com-
plexity of any solution?

The Brute Force Solution

Loop through all possible (ordered) pairs.
How many are there?

Check the influence of each pair.

Keep the best.

Time/exec. # of execs.
def influential_pair(influences):

max_influence = -float('inf") < I
n = len(influences) Ca |
for i in range(n):) n+l
for j in range(n): > 00\+‘
~Sifio== j: 65 nlnt)
' contlnue_ ' ' ' <y n
influence = influences[i] + 1nf1uences[J]—\ ? a ()

if influence > max_influence: /’——_v/
max_ influence = 1nf1uenceﬂ\\\\\-/’—_‘s}> wlv 1)
return max_influence C) < nint)

Cio 1
T(n)- 6&(nY

Time Complexity
Time complexity of this is ©(n?).
TODO: Can we do better?

Note: this algorithm considers each pair of
people twice.

We'll fix that in a moment.

First: A shortcut

Making a table is getting tedious.

Usually, find a chunk that dominates time
complexity; i.e., yields the leading term of T(n).

Observation: If each line takes constant time to
execute once, the line that runs the most
dominates the time complexity.

Totalling Up

for i in range(n):

ijor j in range(n):

—> influence = influences[i] + influences[j] # <- count execs.
On outer iter. #1, inner body runs _ /1 times.
(0

On outer iter. # 2, inner body runs times.

On outer iter. # a, inner body runs 2 times.

. n
The outer loop runs N times. f
= Nn
, AN xM+-- v =
Total number of executions: n+ x _

\
=

3
2
3034.514 ~loo = B(A)

A

def f(n): Y~
for i in range(3*n*+%3 + 5*N**2 - 100):
for j in range(n**5, n**6):
: N _
print(i, j)
né-ns :@(né/
N~
6 3 9
7n)= 2 .1 - n

7)-6 ()

Example 2: The Median

Given: real numbers x,, ..., X,.

Compute: h minimizing the total absolute loss

R(h)=> Ix; - hl

i

N e

Example 2: The Median
Solution: the median.
That is, a middle number.

But how do we actually compute a median?

A Strategy

Recall: one of x,,..., x, must be a median.

Ic]ea: compute R(x,), R(x,), ..., R(x,), return x; that
gives the smallest result.

R(h)=> Ix; - hl
i=1

Basically a brute force approach.

What is the time complexity of this brute
force approach?

How long will it take to run on an input of size
10,0007

def median(numbers):
min_h = None 2
min_value = float('inf') 7YﬂJ:6“4)
—— for h in numbers:
total _abs loss = o

> for x in numbers: z(//
&mpnﬁc; . total_abs_1loss +=.abs(x - h)
1f total _abs _loss < min_value:
R (k) min_value = total_abs_1loss
min_h = h

return min_h

The Median

The brute force approach has ©(n?) time
complexity.

TODO: Is there a better algorithm?

The Median

The brute force approach has ©(n?) time
complexity.

TODO: Is there a better algorithm?
It turns out, you can find the median in linear time.?

2Well, expected time.

8|: numbers = ())

9|: %time median(numbers)
CPU times: user 7.26 s, sys: 0 ns, total:
wall time: 7.26 s

9 4999

10 %time mysteryimedian(numbers)
CPU times: user 4.3 ms, sys: 2 ps, total:
wall time: 4.3 ms

10 4999

Careful!

Not every nested loop has ©(n?) time complexity!

def foo(n): B
for x in range(n): J(n)= 40 -n
for y in range(10): :=9(ﬂ)»

print(x + y)

DSC 408

Tm%ca/ Founolatong 7L

Lecture 2 Part3

Dependent Nested Loops

Example 3: Influence Maximization,
Again

Previous algorithm, influential_pair,
computed influence of each ordered pair of
people.

i =3andj = 7isthesameasi = 7andj = 3

Idea: consider each unordered pair only once:

___‘5 for i in range(n):

for j in range(i + 1, n):

What is the time complexity?

Pictorially

for i in range(s):

for j in range(s):

print(i, j)

Pictorially

for i in range(s):
for j in range(i + 1, 4):
print(i, j)

(0,1) (0,2) (0,3)

def influential_pair_2(influences):
max_influence = -float('inf"')
n = len(influences)
for i in range(n):
for j in range(i + 1, n):
influence = influences[i] + influences[j]
if influence > max_influence:
max_1influence = influence

Goal: How many times does line 6 run in total?
Now inner nested loop depends on outer nested loop.

Independent Dependent

for i in range(n): for i in range(n)
for j in range(n): for j in range(fr n:
Inner loop doesn't depend Inner loop depends on
on outer loop iteration #. outer loop iteration #.
Just multiply: inner body Can’t just multiply: inner

executed n x n = n? times. body executed ??? times.

Dependent Nested Loops

for i in range(n):
for j in range(i + 1, n):
influence = influences[i] + influences[j]

Idea: find formula f(a) for “number of iterations
of inner loop during outer iteration o

prmty

Then total: if(a) _ F(1) + £(2) + £(3)+
a=1

3Why a and not i? Python starts counting at 0, math starts at 1. Using i
would be confusing - does it startat 0 or 1?

)

for i in range(n):
for j in range(i + 1, n):
influence = influences[i] + influences[j]

On outer iter. #1, inner body runs #n —/ times.
On outer iter. #2, inner body runs 72~ times.
On outer iter. # a, inner body runs "X times.

The outer loop runs "1 times.

Totalling Up

On outer iteration a, inner body runs n - a times.
Thatis, f(a)=n-a

There are n outer iterations.

So we need to calculate:

if(a) = i(n - CY) = (n-1) + (n-2) +(Vl~3)+

a=1 a=1 e W)y ()

> (n-a)
a=1

(n-1)+ (n-2) +..+(n-R) +..+4(n-(n-1))+ (n-n)
| S — | S — | C— D —— ——— | S—
1st outer iter 2nd outer iter kth outer iter (n-1)th outer iter nth outer iter

1+2+3+..+(n-3)+(n-2)+(n-1)

Aside: Arithmetic Sums
1+2+3+.+(n-1)+nisan arithmetic sum.
Formula for total: n(n + 1)/2.

You should memorize it!

Time Complexity
influential_pair_2 has ©(n?) time complexity
Same as original influential_pair!

Should we have been able to guess this? Why?

Reason 1: Number of Pairs

We're doing constant work for each unordered
pair.

Recall from 40A: number of pairs of n objects is

! n(n-1)
(5)° 2!(nn- o 2

) -

So 0(n?)

Reason 2: Half as much work

Our new solution does roughly half as much
work as the old one.

But © doesn'’t care about constants: %O(nz) is
still ©(n?).

......
......
......
oooooo
......

Main Idea

If the loops are dependent, you'll usually need to
write down a summation, evaluate.

Main Idea

Halving the work (or thirding, quartering, etc.)
doesn’t change the time complexity.

Design a linear time algorithm for this problem.

psc 4058

TW?QM/ Founolathong ZL

Lecture 2 Part 4

Growth Rates

Time: T(n)

Linear vs. Quadratic Scaling

{
(

Input Size:'n

T(n) = ©(n) means “T(n)
grows like n”

T(n) = ©(n?) means
“T(n) grows like n?”

An algorithm is said to run in linear time if T(n) =
o(n).

An algorithm is said to run in quadratic time if
T(n) = ©(n?).

Linear Growth
If input size doubles, time roughly doubles.
If code takes 5 seconds on 1,000 points...
...on 100,000 data points it takes = 500 seconds.

i.e., 8.3 minutes

Quadratic Growth

If input size doubles, time roughly quadruples.
If code takes 5 seconds on 1,000 points...
...on 100,000 points it takes =~ 50,000 seconds.

i.e., = 14 hours

In data science...
Let's say we have a training set of 10,000 points.

If model takes quadratic time to train, should
expect to wait minutes to hours.

If model takes linear time to train, should expect
to wait seconds to minutes.

These are rules of thumb only.

Exponential Growth

Increasing input size by one doubles (triples,
etc.) time taken.

Grows very quickly!

Example: brute force search of 2" subsets.

for subset in all_subsets(things):
print(subset)

Logarithmic Growth

To increase time taken by one unit, must double
(triple, etc.) the input size.

Grows very slowly!

log n grows slower than n® forany a > 0
l.e., log n grows slower than n, y/n, n'/%% etc.

What is the asymptotic time complexity of the code
below as a function of n?

i=1
while 1 <= n
i=1=*2

Same general strategy as before:

Solution

times does loop body run?”

B
| = 2°
2 =2

YR
4:’9;'3 i=1
6 - 2 while
1§ = 2 i
2= 25

26
64 -

“how many

n | # iters.

Smallegt K
such W

13
2 >n

< i

coONOUT P, WN =

Common Growth Rates

O(1): constant
O(log n): logarithmic
O(n): linear
O(n log n): linearithmic
0(n?): quadratic
0(n®): cubic

(

0(2"): exponential

Exercise

psc 408

Tm%ca/ Founolatong 7L

Lecture 2 Part5

Big Theta, Formalized

So Far

Time Complexity Analysis: a picture of how an
algorithm scales.

Can use ©-notation to express time complexity.

Allows us to ignore details in a rigorous way.
Saves us work!

But what exactly can we ignore?

Now
A deeper look at asymptotic notation:
What does O(-) mean, exactly?
Related notations: O(-) and Q(-).

How these notations save us work.

Theta Notation, Informally

O(-) forgets constant factors, lower-order terms.

/§13+/3474/?é(2/= O(n3)

Theta Notation, Informally

f(n) = ©(g(n)) if f(n) “grows like” g(n).

5n3 +3n? + 42 = O(n3)
\/\/\—/

Theta Notation Examples
(4p? +30 -20 = O(n?)

3n+ s{/i/n@r%h o(n)
2" W - 0(2")

We write f(n) = ©(g(n)) if there are positive con-
stants N, ¢, and ¢, such that for all n > N:

¢,-g(n) < f(n)<c,-g(n)

PSRN P %tm)

1s f)

— C|'3m)

Main Idea

If f(n) = ©(g(n)), then when n is large f is “sand-
wiched” between copies of g.

Proving Big-Theta

We can prove that f(n) = ©(g(n)) by finding these
constants.

Requires an upper bound and a lower bound.

Strategy: Chains of Inequalities

To show f(n) < c¢,g(n), we show:

f(n) < (something) < (another thing) < ...

N

At each step:
We can do anything to make value larger.

But the goal is to simplify it to look like g(n).

Example
Show that 4n3 - 5n% + 50 = O(n3).

Find constants c,, c,, N such that for all n > N:

c1n3 < 4n3-5n?2+50 < c2n3

They don’t have to be the “best” constants! Many
solutions!

Example

c,n’> < 4n*-5n+50 < c,n’

We want to make 4n? - 5n? + 50 “look like” cn?.

For the upper bound, can do anything that
makes the function larger.

For the lower bound, can do anything that makes
the function smaller.

Example

c1n3 < 4n3-5n?2+50 < c2n3

Upper bound:

Example

c1n3 < 4n®-5n?2+50 < c.n

Lower bound:

Example

c1n3 < 4n3-5n?2+50 < c2n3

All together:

Upper-Bounding Tips

“Promote” lower-order positive terms:

3n3+5n<3n3+5n3

“Drop” negative terms

3n3-5n<3n3

Lower-Bounding Tips
“Drop” lower-order positive terms:

3n3+5n>3n3

“Promote and cancel” negative lower-order
terms if possible:

4n3-2n > 4n3-2n3=2n3

Lower-Bounding Tips

“Cancel” negative lower-order terms with big
constants by “breaking off” a piece of high term.
4n®-10n? = (3n3 + n®) - 10n?
=3n3+(n®-10n?)
n3-10n% 2 0 when n®210n> = n >10:

>3n°+0 (n210)

Caution

To upper bound a fraction A/B, you must:
Upper bound the numerator, A.
Lower bound the denominator, B.

And to lower bound a fraction A/B, you must:
Lower bound the numerator, A.
Upper bound the denominator, B.

Let f(n) = [3n + (nsin(mn) + 3)In. Which one of the
following is true?

f=6(n)
f=0(n?)

f = O(nsin(mn))

