
Lecture 2 | Part 1

News

News▶ Lab 01 posted on Gradescope▶ Due Sunday @ 11:59 pm PST on Gradescope.▶ Homework 01 posted on website1▶ Due Wednesday @ 11:59 pm PST on Gradescope.▶ LaTeX template available.

1https://akbarrafiey.github.io/DSC40B-SP24/

Agenda
1. Analyzing nested loops.

2. What is Θ notation, really?

Lecture 2 | Part 2

Nested Loops

Example 1: Influence Maximization

Example 1: Influence Maximization▶ Design an algorithm to solve the following:▶ Given the influence factor of 𝑛 people, determine
the maximum influence achieved by selecting
any two of them?▶ sum of their influence factors is maximized

Exercise▶ What is the time complexity of the brute force
solution?▶ Bonus: what is the best possible time com-
plexity of any solution?

The Brute Force Solution▶ Loop through all possible (ordered) pairs.▶ How many are there?▶ Check the influence of each pair.▶ Keep the best.

Time/exec. # of execs.
def influential_pair(influences):

max_influence = -float('inf')
n = len(influences)
for i in range(n):

for j in range(n):
if i == j:

continue
influence = influences[i] + influences[j]
if influence > max_influence:

max_ influence = influence
return max_influence

C
, I

C2 ↑

-
-C3 n + 1

-- C4 n(n +1)[T-> C5 n(n+ 1)
N

- n(n+ 1)
-g n(n +7)
- Ce # n(n+1

410 I

- (n) = 8(n])

Time Complexity▶ Time complexity of this is Θ(𝑛2).▶ TODO: Can we do better?▶ Note: this algorithm considers each pair of
people twice.▶ We’ll fix that in a moment.

First: A shortcut▶ Making a table is getting tedious.▶ Usually, find a chunk that dominates time
complexity; i.e., yields the leading term of 𝑇(𝑛).▶ Observation: If each line takes constant time to
execute once, the line that runs the most
dominates the time complexity.

Totalling Up

for i in range(n):
for j in range(n):

influence = influences[i] + influences[j] # <- count execs.▶ On outer iter. # 1, inner body runs times.▶ On outer iter. # 2, inner body runs times.▶ On outer iter. # 𝛼, inner body runs times.▶ The outer loop runs times.▶ Total number of executions:

[r

C
= 0

N

i = 1

R

n
U
-

n + n + n + n + .. . + 1 = n . n

= n2

def f(n):
for i in range(3*n**3 + 5*n**2 - 100):

for j in range(n**5, n**6):
print(i, j)

3n3
+

=
0(n3

-

-

H
6

-
N

5
=
A(n6)

-

6 3 I
(1) =

R . 4 =
N

>(4)= 8 (n))

Example 2: The Median▶ Given: real numbers 𝑥1, … , 𝑥𝑛.▶ Compute: ℎ minimizing the total absolute loss𝑅(ℎ) = ∑𝑖=1 |𝑥𝑖 − ℎ|M

-

Example 2: The Median▶ Solution: the median.▶ That is, a middle number.▶ But how do we actually compute a median?

A Strategy▶ Recall: one of 𝑥1, … , 𝑥𝑛 must be a median.▶ Idea: compute 𝑅(𝑥1), 𝑅(𝑥2), … , 𝑅(𝑥𝑛), return 𝑥𝑖 that
gives the smallest result.𝑅(ℎ) = ∑𝑖=1 |𝑥𝑖 − ℎ|▶ Basically a brute force approach.

Exercise▶ What is the time complexity of this brute
force approach?▶ How long will it take to run on an input of size
10,000?

def median(numbers):
min_h = None
min_value = float('inf')
for h in numbers:

total_abs_loss = 0
for x in numbers:

total_abs_loss += abs(x - h)
if total_abs_loss < min_value:

min_value = total_abs_loss
min_h = h

return min_h

T(n) = A(n])
-

- F ↳
computing ↳

R(k)

The Median▶ The brute force approach has Θ(𝑛2) time
complexity.▶ TODO: Is there a better algorithm?

▶ It turns out, you can find the median in linear time.

The Median▶ The brute force approach has Θ(𝑛2) time
complexity.▶ TODO: Is there a better algorithm?▶ It turns out, you can find the median in linear time.2

2Well, expected time.

Careful!▶ Not every nested loop has Θ(𝑛2) time complexity!
def foo(n):

for x in range(n):
for y in range(10):

print(x + y)

T (1) = 10 . n

= A(n) .

Lecture 2 | Part 3

Dependent Nested Loops

Example 3: Influence Maximization,
Again▶ Previous algorithm, influential_pair,

computed influence of each ordered pair of
people.▶ i = 3 and j = 7 is the same as i = 7 and j = 3▶ Idea: consider each unordered pair only once:

for i in range(n):
for j in range(i + 1, n):▶ What is the time complexity?

->

Pictorially
for i in range(4):

for j in range(4):
print(i, j)

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3)

Pictorially
for i in range(4):

for j in range(i + 1, 4):
print(i, j)

(0,1) (0,2) (0,3)
(1,2) (1,3)

(2,3)

1 def influential_pair_2(influences):
2 max_influence = -float('inf')
3 n = len(influences)
4 for i in range(n):
5 for j in range(i + 1, n):
6 influence = influences[i] + influences[j]
7 if influence > max_influence:
8 max_influence = influence▶ Goal: How many times does line 6 run in total?▶ Now inner nested loop depends on outer nested loop.

Independent
for i in range(n):

for j in range(n):
...▶ Inner loop doesn’t depend

on outer loop iteration #.▶ Just multiply: inner body
executed 𝑛 × 𝑛 = 𝑛2 times.

Dependent
for i in range(n):

for j in range(i, n):
...▶ Inner loop depends on

outer loop iteration #.▶ Can’t just multiply: inner
body executed ??? times.

+
1

Dependent Nested Loops
for i in range(n):

for j in range(i + 1, n):
influence = influences[i] + influences[j]▶ Idea: find formula 𝑓(𝛼) for “number of iterations

of inner loop during outer iteration 𝛼”3▶ Then total:
𝑛∑𝛼=1 𝑓(𝛼)

3Why 𝛼 and not 𝑖? Python starts counting at 0, math starts at 1. Using 𝑖
would be confusing – does it start at 0 or 1?

=
f(1) + f(2) + f(3) + ... + f(n)

for i in range(n):
for j in range(i + 1, n):

influence = influences[i] + influences[j]▶ On outer iter. # 1, inner body runs times.▶ On outer iter. # 2, inner body runs times.▶ On outer iter. # 𝛼, inner body runs times.▶ The outer loop runs times.

n -1

n - 2

n-x

N

Totalling Up▶ On outer iteration 𝛼, inner body runs 𝑛 − 𝛼 times.▶ That is, 𝑓(𝛼) = 𝑛 − 𝛼▶ There are 𝑛 outer iterations.▶ So we need to calculate:𝑛∑𝛼=1 𝑓(𝛼) = 𝑛∑𝛼=1(𝑛 − 𝛼) = (n- 1) + (n-2) + (n - 3)+

... + (n - (n-))) + (n-2)

𝑛∑𝛼=1(𝑛 − 𝛼)=(𝑛 − 1)⏟
1st outer iter

+ (𝑛 − 2)⏟
2nd outer iter

+…+ (𝑛 − 𝑘)⏟
kth outer iter

+…+(𝑛 − (𝑛 − 1))⏟
(n-1)th outer iter

+ (𝑛 − 𝑛)⏟
nth outer iter=1 + 2 + 3 + … + (𝑛 − 3) + (𝑛 − 2) + (𝑛 − 1)=

Aside: Arithmetic Sums▶ 1 + 2 + 3 + …+ (n-1) + n is an arithmetic sum.▶ Formula for total: 𝑛(𝑛 + 1)/2.▶ You should memorize it!

Time Complexity▶ influential_pair_2 has Θ(𝑛2) time complexity▶ Same as original influential_pair!▶ Should we have been able to guess this? Why?

Reason 1: Number of Pairs▶ We’re doing constant work for each unordered
pair.▶ Recall from 40A: number of pairs of 𝑛 objects is(𝑛2) = 𝑛!2!(𝑛 − 2)! = 𝑛(𝑛 − 1)2▶ So Θ(𝑛2)

Reason 2: Half as much work▶ Our new solution does roughly half as much
work as the old one.▶ But Θ doesn’t care about constants: 12Θ(𝑛2) is
still Θ(𝑛2).

⎛⎜⎜⎝
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎞⎟⎟⎠

Main Idea
If the loops are dependent, you’ll usually need to
write down a summation, evaluate.

Main Idea
Halving the work (or thirding, quartering, etc.)
doesn’t change the time complexity.

Exercise
Design a linear time algorithm for this problem.

Lecture 2 | Part 4

Growth Rates

Linear vs. Quadratic Scaling

Input Size: 𝑛Ti
m
e:
𝑇(𝑛) ▶ 𝑇(𝑛) = Θ(𝑛) means “𝑇(𝑛)

grows like 𝑛”▶ 𝑇(𝑛) = Θ(𝑛2) means
“𝑇(𝑛) grows like 𝑛2”i

Definition
An algorithm is said to run in linear time if 𝑇(𝑛) =Θ(𝑛).
Definition
An algorithm is said to run in quadratic time if𝑇(𝑛) = Θ(𝑛2).

Linear Growth▶ If input size doubles, time roughly doubles.▶ If code takes 5 seconds on 1,000 points...▶ ...on 100,000 data points it takes ≈ 500 seconds.▶ i.e., 8.3 minutes

Quadratic Growth▶ If input size doubles, time roughly quadruples.▶ If code takes 5 seconds on 1,000 points...▶ ...on 100,000 points it takes ≈ 50,000 seconds.▶ i.e., ≈ 14 hours

In data science...▶ Let’s say we have a training set of 10,000 points.▶ If model takes quadratic time to train, should
expect to wait minutes to hours.▶ If model takes linear time to train, should expect
to wait seconds to minutes.▶ These are rules of thumb only.

Exponential Growth▶ Increasing input size by one doubles (triples,
etc.) time taken.▶ Grows very quickly!▶ Example: brute force search of 2𝑛 subsets.
for subset in all_subsets(things):

print(subset)

Logarithmic Growth▶ To increase time taken by one unit, must double
(triple, etc.) the input size.▶ Grows very slowly!▶ log 𝑛 grows slower than 𝑛𝛼 for any 𝛼 > 0▶ I.e., log 𝑛 grows slower than 𝑛, √𝑛, 𝑛1/1,000, etc.

Exercise
What is the asymptotic time complexity of the code
below as a function of 𝑛?
i = 1
while i <= n

i = i * 2

Solution▶ Same general strategy as before: “how many
times does loop body run?”

i = 1
while i <= n

i = i * 2

𝑛 # iters.

1
2
3
4
5
6
7
8

i
=
20

2 =
21 #

4 = 22 2

8 = 23 2 smallest K

16 =
24 33 such that

5 3 2 >n

332 26
4

k = bgn
i

Common Growth Rates▶ Θ(1): constant▶ Θ(log𝑛): logarithmic▶ Θ(𝑛): linear▶ Θ(𝑛 log𝑛): linearithmic▶ Θ(𝑛2): quadratic▶ Θ(𝑛3): cubic▶ Θ(2𝑛): exponential

Exercise
Which grows faster, 𝑛! or 2𝑛?&

n ! = n .(- 1) . (n - 2) . (n -3)
2 .

2
"

=2 . 2 .
2

.

22 ...

2 . 2

Lecture 2 | Part 5

Big Theta, Formalized

So Far▶ Time Complexity Analysis: a picture of how an
algorithm scales.▶ Can use Θ-notation to express time complexity.▶ Allows us to ignore details in a rigorous way.▶ Saves us work!▶ But what exactly can we ignore?

Now▶ A deeper look at asymptotic notation:▶ What does Θ(⋅) mean, exactly?▶ Related notations: 𝑂(⋅) and Ω(⋅).▶ How these notations save us work.

Theta Notation, Informally▶ Θ(⋅) forgets constant factors, lower-order terms.5𝑛3 + 3𝑛2 + 42 = Θ(𝑛3),I

Theta Notation, Informally▶ 𝑓(𝑛) = Θ(𝑔(𝑛)) if 𝑓(𝑛) “grows like” 𝑔(𝑛).5𝑛3 + 3𝑛2 + 42 = Θ(𝑛3)
-

Theta Notation Examples▶ 4𝑛2 + 3𝑛 − 20 = Θ(𝑛2)▶ 3𝑛 + sin(4𝜋𝑛) = Θ(𝑛)▶ 2𝑛 + 100𝑛 = Θ(2𝑛)·

Definition
We write 𝑓(𝑛) = Θ(𝑔(𝑛)) if there are positive con-
stants 𝑁, 𝑐1 and 𝑐2 such that for all 𝑛 ≥ 𝑁:𝑐1 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ⋅ 𝑔(𝑛)

-> 2
. g(n)

-> f(n)

I
-> C ,. g(n)

N

Main Idea
If 𝑓(𝑛) = Θ(𝑔(𝑛)), then when 𝑛 is large 𝑓 is “sand-
wiched” between copies of 𝑔.

Proving Big-Theta▶ We can prove that 𝑓(𝑛) = Θ(𝑔(𝑛)) by finding these
constants.𝑐1𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛) (𝑛 ≥ 𝑁)▶ Requires an upper bound and a lower bound.

& &
-

Strategy: Chains of Inequalities▶ To show 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛), we show:𝑓(𝑛) ≤ (something) ≤ (another thing) ≤ ... ≤ 𝑐2𝑔(𝑛)▶ At each step:▶ We can do anything to make value larger.▶ But the goal is to simplify it to look like 𝑔(𝑛).
D

..... - -

Example▶ Show that 4𝑛3 − 5𝑛2 + 50 = Θ(𝑛3).▶ Find constants 𝑐1, 𝑐2, 𝑁 such that for all 𝑛 > 𝑁:𝑐1𝑛3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛3▶ They don’t have to be the “best” constants! Many
solutions!

Example𝑐1𝑛3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛3▶ We want to make 4𝑛2 − 5𝑛2 + 50 “look like” 𝑐𝑛3.▶ For the upper bound, can do anything that
makes the function larger.▶ For the lower bound, can do anything that makes
the function smaller.

Example𝑐1𝑛3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛3▶ Upper bound:

Example𝑐1𝑛3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛3▶ Lower bound:

Example𝑐1𝑛3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛3▶ All together:

Upper-Bounding Tips▶ “Promote” lower-order positive terms:3𝑛3 + 5𝑛 ≤ 3𝑛3 + 5𝑛3▶ “Drop” negative terms3𝑛3 − 5𝑛 ≤ 3𝑛3

Lower-Bounding Tips▶ “Drop” lower-order positive terms:3𝑛3 + 5𝑛 ≥ 3𝑛3▶ “Promote and cancel” negative lower-order
terms if possible:4𝑛3 − 2𝑛 ≥ 4𝑛3 − 2𝑛3 = 2𝑛3

Lower-Bounding Tips▶ “Cancel” negative lower-order terms with big
constants by “breaking off” a piece of high term.4𝑛3 − 10𝑛2 = (3𝑛3 + 𝑛3) − 10𝑛2= 3𝑛3 + (𝑛3 − 10𝑛2)𝑛3 − 10𝑛2 ≥ 0 when 𝑛3 ≥ 10𝑛2 ⟹ 𝑛 ≥ 10:≥ 3𝑛3 + 0 (𝑛 ≥ 10)

Caution▶ To upper bound a fraction 𝐴/𝐵, you must:▶ Upper bound the numerator, 𝐴.▶ Lower bound the denominator, 𝐵.▶ And to lower bound a fraction 𝐴/𝐵, you must:▶ Lower bound the numerator, 𝐴.▶ Upper bound the denominator, 𝐵.

Exercise
Let 𝑓(𝑛) = [3𝑛 + (𝑛 sin(𝜋𝑛) + 3)]𝑛. Which one of the
following is true?▶ 𝑓 = Θ(𝑛)▶ 𝑓 = Θ(𝑛2)▶ 𝑓 = Θ(𝑛 sin(𝜋𝑛))

