
Lecture 2 | Part 1

News

News
▶ Lab 01 posted on Gradescope

▶ Due Sunday @ 11:59 pm PST on Gradescope.

▶ Homework 01 posted on website1
▶ Due Wednesday @ 11:59 pm PST on Gradescope.
▶ LaTeX template available.

1https://akbarrafiey.github.io/DSC40B-SP24/

https://akbarrafiey.github.io/DSC40B-SP24/
https://akbarrafiey.github.io/DSC40B-SP24/

Agenda
1. Analyzing nested loops.

2. What is Θ notation, really?

Lecture 2 | Part 2

Nested Loops

Example 1: Influence Maximization

Example 1: Influence Maximization
▶ Design an algorithm to solve the following:

▶ Given the influence factor of 𝑛 people, determine
the maximum influence achieved by selecting
any two of them?
▶ sum of their influence factors is maximized

Exercise
▶ What is the time complexity of the brute force
solution?

▶ Bonus: what is the best possible time com-
plexity of any solution?

The Brute Force Solution
▶ Loop through all possible (ordered) pairs.

▶ How many are there?

▶ Check the influence of each pair.

▶ Keep the best.

Time/exec. # of execs.
def influential_pair(influences):

max_influence = -float('inf')
n = len(influences)
for i in range(n):

for j in range(n):
if i == j:

continue
influence = influences[i] + influences[j]
if influence > max_influence:

max_ influence = influence
return max_influence

Time Complexity

▶ Time complexity of this is Θ(𝑛2).

▶ TODO: Can we do better?

▶ Note: this algorithm considers each pair of
people twice.

▶ We’ll fix that in a moment.

First: A shortcut
▶ Making a table is getting tedious.

▶ Usually, find a chunk that dominates time
complexity; i.e., yields the leading term of 𝑇(𝑛).

▶ Observation: If each line takes constant time to
execute once, the line that runs the most
dominates the time complexity.

Totalling Up

for i in range(n):
for j in range(n):

influence = influences[i] + influences[j] # <- count execs.

▶ On outer iter. # 1, inner body runs times.

▶ On outer iter. # 2, inner body runs times.

▶ On outer iter. # 𝛼, inner body runs times.

▶ The outer loop runs times.

▶ Total number of executions:

def f(n):
for i in range(3*n**3 + 5*n**2 - 100):

for j in range(n**5, n**6):
print(i, j)

Example 2: The Median
▶ Given: real numbers 𝑥1, … , 𝑥𝑛.

▶ Compute: ℎ minimizing the total absolute loss

𝑅(ℎ) = ∑
𝑖=1
|𝑥𝑖 − ℎ|

Example 2: The Median
▶ Solution: the median.

▶ That is, a middle number.

▶ But how do we actually compute a median?

A Strategy
▶ Recall: one of 𝑥1, … , 𝑥𝑛 must be a median.

▶ Idea: compute 𝑅(𝑥1), 𝑅(𝑥2), … , 𝑅(𝑥𝑛), return 𝑥𝑖 that
gives the smallest result.

𝑅(ℎ) = ∑
𝑖=1
|𝑥𝑖 − ℎ|

▶ Basically a brute force approach.

Exercise
▶ What is the time complexity of this brute
force approach?

▶ How long will it take to run on an input of size
10,000?

def median(numbers):
min_h = None
min_value = float('inf')
for h in numbers:

total_abs_loss = 0
for x in numbers:

total_abs_loss += abs(x - h)
if total_abs_loss < min_value:

min_value = total_abs_loss
min_h = h

return min_h

The Median
▶ The brute force approach has Θ(𝑛2) time
complexity.

▶ TODO: Is there a better algorithm?

▶ It turns out, you can find the median in linear time.

The Median
▶ The brute force approach has Θ(𝑛2) time
complexity.

▶ TODO: Is there a better algorithm?
▶ It turns out, you can find the median in linear time.2

2Well, expected time.

Careful!
▶ Not every nested loop has Θ(𝑛2) time complexity!

def foo(n):
for x in range(n):

for y in range(10):
print(x + y)

Lecture 2 | Part 3

Dependent Nested Loops

Example 3: Influence Maximization,
Again

▶ Previous algorithm, influential_pair,
computed influence of each ordered pair of
people.
▶ i = 3 and j = 7 is the same as i = 7 and j = 3

▶ Idea: consider each unordered pair only once:

for i in range(n):
for j in range(i + 1, n):

▶ What is the time complexity?

Pictorially
for i in range(4):

for j in range(4):
print(i, j)

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3)

Pictorially
for i in range(4):

for j in range(i + 1, 4):
print(i, j)

(0,1) (0,2) (0,3)
(1,2) (1,3)

(2,3)

1 def influential_pair_2(influences):
2 max_influence = -float('inf')
3 n = len(influences)
4 for i in range(n):
5 for j in range(i + 1, n):
6 influence = influences[i] + influences[j]
7 if influence > max_influence:
8 max_influence = influence

▶ Goal: How many times does line 6 run in total?
▶ Now inner nested loop depends on outer nested loop.

Independent
for i in range(n):

for j in range(n):
...

▶ Inner loop doesn’t depend
on outer loop iteration #.

▶ Just multiply: inner body
executed 𝑛 × 𝑛 = 𝑛2 times.

Dependent
for i in range(n):

for j in range(i, n):
...

▶ Inner loop depends on
outer loop iteration #.

▶ Can’t just multiply: inner
body executed ??? times.

Dependent Nested Loops
for i in range(n):

for j in range(i + 1, n):
influence = influences[i] + influences[j]

▶ Idea: find formula 𝑓(𝛼) for “number of iterations
of inner loop during outer iteration 𝛼”3

▶ Then total:
𝑛
∑
𝛼=1

𝑓(𝛼)

3Why 𝛼 and not 𝑖? Python starts counting at 0, math starts at 1. Using 𝑖
would be confusing – does it start at 0 or 1?

for i in range(n):
for j in range(i + 1, n):

influence = influences[i] + influences[j]

▶ On outer iter. # 1, inner body runs times.

▶ On outer iter. # 2, inner body runs times.

▶ On outer iter. # 𝛼, inner body runs times.

▶ The outer loop runs times.

Totalling Up
▶ On outer iteration 𝛼, inner body runs 𝑛 − 𝛼 times.

▶ That is, 𝑓(𝛼) = 𝑛 − 𝛼

▶ There are 𝑛 outer iterations.

▶ So we need to calculate:
𝑛
∑
𝛼=1

𝑓(𝛼) =
𝑛
∑
𝛼=1
(𝑛 − 𝛼)

𝑛
∑
𝛼=1
(𝑛 − 𝛼)

=
(𝑛 − 1)⏟
1st outer iter

+ (𝑛 − 2)⏟
2nd outer iter

+…+ (𝑛 − 𝑘)⏟
kth outer iter

+…+(𝑛 − (𝑛 − 1))⏟
(n-1)th outer iter

+ (𝑛 − 𝑛)⏟
nth outer iter

=
1 + 2 + 3 + … + (𝑛 − 3) + (𝑛 − 2) + (𝑛 − 1)

=

Aside: Arithmetic Sums
▶ 1 + 2 + 3 + …+ (n-1) + n is an arithmetic sum.

▶ Formula for total: 𝑛(𝑛 + 1)/2.

▶ You should memorize it!

Time Complexity

▶ influential_pair_2 has Θ(𝑛2) time complexity

▶ Same as original influential_pair!

▶ Should we have been able to guess this? Why?

Reason 1: Number of Pairs
▶ We’re doing constant work for each unordered
pair.

▶ Recall from 40A: number of pairs of 𝑛 objects is

(𝑛2) =
𝑛!

2!(𝑛 − 2)! =
𝑛(𝑛 − 1)

2

▶ So Θ(𝑛2)

Reason 2: Half as much work
▶ Our new solution does roughly half as much
work as the old one.

▶ But Θ doesn’t care about constants: 12Θ(𝑛
2) is

still Θ(𝑛2).

⎛⎜⎜

⎝

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎞⎟⎟

⎠

Main Idea
If the loops are dependent, you’ll usually need to
write down a summation, evaluate.

Main Idea

Halving the work (or thirding, quartering, etc.)
doesn’t change the time complexity.

Exercise
Design a linear time algorithm for this problem.

Lecture 2 | Part 4

Growth Rates

Linear vs. Quadratic Scaling

Input Size: 𝑛

Ti
m
e:
𝑇(
𝑛) ▶ 𝑇(𝑛) = Θ(𝑛) means “𝑇(𝑛)

grows like 𝑛”

▶ 𝑇(𝑛) = Θ(𝑛2) means
“𝑇(𝑛) grows like 𝑛2”

Definition

An algorithm is said to run in linear time if 𝑇(𝑛) =
Θ(𝑛).

Definition

An algorithm is said to run in quadratic time if
𝑇(𝑛) = Θ(𝑛2).

Linear Growth
▶ If input size doubles, time roughly doubles.

▶ If code takes 5 seconds on 1,000 points...

▶ ...on 100,000 data points it takes ≈ 500 seconds.

▶ i.e., 8.3 minutes

Quadratic Growth
▶ If input size doubles, time roughly quadruples.

▶ If code takes 5 seconds on 1,000 points...

▶ ...on 100,000 points it takes ≈ 50,000 seconds.

▶ i.e., ≈ 14 hours

In data science...
▶ Let’s say we have a training set of 10,000 points.

▶ If model takes quadratic time to train, should
expect to wait minutes to hours.

▶ If model takes linear time to train, should expect
to wait seconds to minutes.

▶ These are rules of thumb only.

Exponential Growth
▶ Increasing input size by one doubles (triples,
etc.) time taken.

▶ Grows very quickly!

▶ Example: brute force search of 2𝑛 subsets.

for subset in all_subsets(things):
print(subset)

Logarithmic Growth
▶ To increase time taken by one unit, must double
(triple, etc.) the input size.

▶ Grows very slowly!

▶ log 𝑛 grows slower than 𝑛𝛼 for any 𝛼 > 0
▶ I.e., log 𝑛 grows slower than 𝑛, √𝑛, 𝑛1/1,000, etc.

Exercise
What is the asymptotic time complexity of the code
below as a function of 𝑛?

i = 1
while i <= n

i = i * 2

Solution
▶ Same general strategy as before: “how many
times does loop body run?”

i = 1
while i <= n

i = i * 2

𝑛 # iters.

1
2
3
4
5
6
7
8

Common Growth Rates
▶ Θ(1): constant
▶ Θ(log𝑛): logarithmic
▶ Θ(𝑛): linear
▶ Θ(𝑛 log𝑛): linearithmic
▶ Θ(𝑛2): quadratic
▶ Θ(𝑛3): cubic
▶ Θ(2𝑛): exponential

Exercise
Which grows faster, 𝑛! or 2𝑛?

Lecture 2 | Part 5

Big Theta, Formalized

So Far
▶ Time Complexity Analysis: a picture of how an
algorithm scales.

▶ Can use Θ-notation to express time complexity.

▶ Allows us to ignore details in a rigorous way.
▶ Saves us work!
▶ But what exactly can we ignore?

Now
▶ A deeper look at asymptotic notation:

▶ What does Θ(⋅) mean, exactly?

▶ Related notations: 𝑂(⋅) and Ω(⋅).

▶ How these notations save us work.

Theta Notation, Informally
▶ Θ(⋅) forgets constant factors, lower-order terms.

5𝑛3 + 3𝑛2 + 42 = Θ(𝑛3)

Theta Notation, Informally
▶ 𝑓(𝑛) = Θ(𝑔(𝑛)) if 𝑓(𝑛) “grows like” 𝑔(𝑛).

5𝑛3 + 3𝑛2 + 42 = Θ(𝑛3)

Theta Notation Examples

▶ 4𝑛2 + 3𝑛 − 20 = Θ(𝑛2)

▶ 3𝑛 + sin(4𝜋𝑛) = Θ(𝑛)

▶ 2𝑛 + 100𝑛 = Θ(2𝑛)

Definition
We write 𝑓(𝑛) = Θ(𝑔(𝑛)) if there are positive con-
stants 𝑁, 𝑐1 and 𝑐2 such that for all 𝑛 ≥ 𝑁:

𝑐1 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ⋅ 𝑔(𝑛)

Main Idea
If 𝑓(𝑛) = Θ(𝑔(𝑛)), then when 𝑛 is large 𝑓 is “sand-
wiched” between copies of 𝑔.

Proving Big-Theta
▶ We can prove that 𝑓(𝑛) = Θ(𝑔(𝑛)) by finding these
constants.

𝑐1𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛) (𝑛 ≥ 𝑁)

▶ Requires an upper bound and a lower bound.

Strategy: Chains of Inequalities
▶ To show 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛), we show:

𝑓(𝑛) ≤ (something) ≤ (another thing) ≤ ... ≤ 𝑐2𝑔(𝑛)

▶ At each step:
▶ We can do anything to make value larger.

▶ But the goal is to simplify it to look like 𝑔(𝑛).

Example

▶ Show that 4𝑛3 − 5𝑛2 + 50 = Θ(𝑛3).

▶ Find constants 𝑐1, 𝑐2, 𝑁 such that for all 𝑛 > 𝑁:

𝑐1𝑛3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛3

▶ They don’t have to be the “best” constants! Many
solutions!

Example
𝑐1𝑛3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛3

▶ We want to make 4𝑛2 − 5𝑛2 + 50 “look like” 𝑐𝑛3.

▶ For the upper bound, can do anything that
makes the function larger.

▶ For the lower bound, can do anything that makes
the function smaller.

Example
𝑐1𝑛3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛3

▶ Upper bound:

Example
𝑐1𝑛3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛3

▶ Lower bound:

Example
𝑐1𝑛3 ≤ 4𝑛3 − 5𝑛2 + 50 ≤ 𝑐2𝑛3

▶ All together:

Upper-Bounding Tips
▶ “Promote” lower-order positive terms:

3𝑛3 + 5𝑛 ≤ 3𝑛3 + 5𝑛3

▶ “Drop” negative terms

3𝑛3 − 5𝑛 ≤ 3𝑛3

Lower-Bounding Tips
▶ “Drop” lower-order positive terms:

3𝑛3 + 5𝑛 ≥ 3𝑛3

▶ “Promote and cancel” negative lower-order
terms if possible:

4𝑛3 − 2𝑛 ≥ 4𝑛3 − 2𝑛3 = 2𝑛3

Lower-Bounding Tips
▶ “Cancel” negative lower-order terms with big
constants by “breaking off” a piece of high term.

4𝑛3 − 10𝑛2 = (3𝑛3 + 𝑛3) − 10𝑛2
= 3𝑛3 + (𝑛3 − 10𝑛2)

𝑛3 − 10𝑛2 ≥ 0 when 𝑛3 ≥ 10𝑛2 ⟹ 𝑛 ≥ 10:

≥ 3𝑛3 + 0 (𝑛 ≥ 10)

Caution
▶ To upper bound a fraction 𝐴/𝐵, you must:

▶ Upper bound the numerator, 𝐴.
▶ Lower bound the denominator, 𝐵.

▶ And to lower bound a fraction 𝐴/𝐵, you must:
▶ Lower bound the numerator, 𝐴.
▶ Upper bound the denominator, 𝐵.

Exercise

Let 𝑓(𝑛) = [3𝑛 + (𝑛 sin(𝜋𝑛) + 3)]𝑛. Which one of the
following is true?

▶ 𝑓 = Θ(𝑛)

▶ 𝑓 = Θ(𝑛2)

▶ 𝑓 = Θ(𝑛 sin(𝜋𝑛))

