DSC 40B Theoretical Foundations II

Lecture 3 | Part 1

News

News

- ► Lab 02 posted on Gradescope
 - ▶ Due Sunday @ 11:59 pm PST on Gradescope.
- First Discussion Session tomorrow
 - ▶ @ 3:00 pm 3:50 pm in PCYNH 109

DSC 40B Theoretical Foundation II

Lecture 3 | Part 2

Big Theta, Formalized

Today in DSC 40B...

- Formally define Θ , O, Ω notation.
- Some useful properties.
- ► The drawbacks of asymptotic time complexity.
- Best, worst case time complexities.

So Far

- Time Complexity Analysis: a picture of how an algorithm scales.
- Can use Θ-notation to express time complexity.
- Allows us to **ignore** details in a rigorous way.
 - Saves us work!
 - But what exactly can we ignore?

Theta Notation, Informally

 \triangleright $\Theta(\cdot)$ forgets constant factors, lower-order terms.

$$5n^3 + 3n^2 + 42 = \Theta(n^3)$$

Theta Notation, Informally

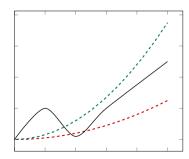
ightharpoonup f(n) = Θ(g(n)) if f(n) "grows like" g(n).

 $5n^3 + 3n^2 + 42 = \Theta(n^3)$

Definition

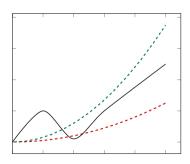
We write $f(n) = \Theta(g(n))$ if there are positive constants N, c_1 and c_2 such that for all $n \ge N$:

$${\color{red} c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)}$$



Main Idea

If $f(n) = \Theta(g(n))$, then when n is large f is "sandwiched" between copies of g.



Proving Big-Theta

We can prove that $f(n) = \Theta(g(n))$ by finding these constants.

$$c_1g(n) \le f(n) \le c_2g(n)$$
 $(n \ge N)$

Requires an upper bound and a lower bound.

Strategy: Chains of Inequalities

► To show $f(n) \le c_2 g(n)$, we show:

$$f(n) \le \text{(something)} \le \text{(another thing)} \le \dots \le c_2 g(n)$$

- At each step:
 - We can do anything to make value larger.
 - ▶ But the goal is to simplify it to look like q(n).

- Show that $4n^3 5n^2 + 50 = Θ(n^3)$.
- Find constants c_1, c_2, N such that for all n > N:

$$c_1 n^3 \le 4n^3 - 5n^2 + 50 \le c_2 n^3$$

They don't have to be the "best" constants! Many solutions!

$$c_1 n^3 \le 4n^3 - 5n^2 + 50 \le c_2 n^3$$

- We want to make $4n^3 5n^2 + 50$ "look like" cn^3 .
- For the upper bound, can do anything that makes the function **larger**.
- For the lower bound, can do anything that makes the function **smaller**.

$$c_1 n^3 \le 4n^3 - 5n^2 + 50 \le c_2 n^3$$

Upper bound:

Upper-Bounding Tips

"Promote" lower-order positive terms:

$$3n^3 + 5n \le 3n^3 + 5n^3$$

"Drop" negative terms

$$3n^3 - 5n \le 3n^3$$

$$c_1 n^3 \le 4n^3 - 5n^2 + 50 \le c_2 n^3$$

Lower bound:

Lower-Bounding Tips

► "Drop" lower-order **positive** terms:

$$3n^3 + 5n \ge 3n^3$$

"Promote and cancel" negative lower-order terms if possible:

$$4n^3 - 2n \ge 4n^3 - 2n^3 = 2n^3$$

Lower-Bounding Tips

"Cancel" negative lower-order terms with big constants by "breaking off" a piece of high term.

$$4n^{3} - 10n^{2} = (3n^{3} + n^{3}) - 10n^{2}$$

$$= 3n^{3} + (n^{3} - 10n^{2})$$

$$n^{3} - 10n^{2} \ge 0 \text{ when } n^{3} \ge 10n^{2} \implies n \ge 10:$$

$$\ge 3n^{3} + 0 \qquad (n \ge 10)$$

Caution

- ► To upper bound a fraction A/B, you must:
 - Upper bound the numerator, A.
 - Lower bound the denominator, B.

- ► And to lower bound a fraction A/B, you must:
 - Lower bound the numerator, A.
 - Upper bound the denominator, B.

DSC 40B Theoretical Foundation II

Lecture 3 | Part 3

Big-Oh and Big-Omega

Other Bounds

- f = Θ(g) means that f is both **upper** and **lower** bounded by factors of g.
- Sometimes we only have (or care about) upper bound or lower bound.

We have notation for that, too.

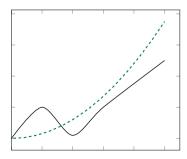
Big-O Notation, Informally

- Sometimes we only care about upper bound.
- f(n) = O(g(n)) if f "grows at most as fast" as g.
- Examples:
 - \triangleright 4 $n^2 = O(n^{100})$
 - \rightarrow 4n² = O(n³)
 - ► $4n^2 = O(n^2)$ and $4n^2 = \Theta(n^2)$

Definition

We write f(n) = O(g(n)) if there are positive constants N and c such that for all $n \ge N$:

$$f(n) \le c \cdot g(n)$$



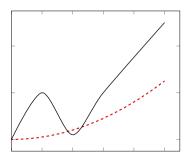
Big-Omega Notation

- Sometimes we only care about lower bound.
- Intuitively: $f(n) = \Omega(g(n))$ if f "grows at least as fast" as g.
- Examples:
 - $ightharpoonup 4n^{100} = \Omega(n^5)$
 - $\blacktriangleright 4n^2 = \Omega(n)$
 - \blacktriangleright 4n² = Ω(n²) and 4n² = Θ(n²)

Definition

We write $f(n) = \Omega(g(n))$ if there are positive constants N and c such that for all $n \ge N$:

$$c_1 \cdot g(n) \leq f(n)$$



Theta, Big-O, and Big-Omega

- ▶ If $f = \Theta(g)$ then f = O(g) and $f = \Omega(g)$.
- ▶ If f = O(g) and $f = \Omega(g)$ then $f = \Theta(g)$.
- Pictorially:
 - $\triangleright \Theta \implies (O \text{ and } \Omega)$
 - \triangleright (O and Ω) \Longrightarrow Θ

Analogies

- ► Θ is kind of like =
- ▶ O is kind of like ≤
- Ω is kind of like ≥

Why?

Laziness.

Sometimes finding an upper or lower bound would take too much work, and/or we don't really care about it anyways.

Big-Oh

Often used when another part of the code would dominate time complexity anyways.

Exercise

```
What is the time complexity of foo?
def foo(n):
    for a in range(n**4):
        print(a)
    for i in range(n):
        for j in range(i**2):
             print(i + j)
```

Example: Big-Oh

```
def foo(n):
    for a in range(n**4):
        print(a)

    for i in range(n):
        for j in range(i**2):
            print(i + j)
```

Big-Omega

Often used when the time complexity will be so large that we don't care what it is, exactly.

Example: Big-Omega

```
best separation = float('inf')
best clustering = None
for clustering in all clusterings(data):
   sep = calculate separation(clustering)
   if sep < best separation:
        best separation = sep
        best clustering = clustering
print(best clustering)
```

Other Notations

- f(n) = o(g(n)) if f grows "much slower" than g.
 - ▶ Whatever c you choose, eventually f < cg(n).
 - Example: $n^2 = o(n^3)$
- $ightharpoonup f(n) = \omega(g(n))$ if f grows "much faster" than g
 - ▶ Whatever c you choose, eventually f > cg(n).
 - Example: $n^3 = \omega(n^2)$
- We won't really use these.

DSC 40B Theoretical Foundation II

Lecture 3 | Part 4

Properties

Properties

We don't usually go back to the definition when using Θ .

Instead, we use a few basic properties.

Properties of ⊙

- 1. **Symmetry**: If $f = \Theta(g)$, then $g = \Theta(f)$.
- 2. **Transitivity**: If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.
- 3. Reflexivity: $f = \Theta(f)$

Exercise

Which of the following properties are true?

- ightharpoonup T or F: If f = O(q) and g = O(h), then f = O(h).
- Tor F: If $f = \Omega(h)$ and $g = \Omega(h)$, then $f = \Omega(g)$.
- T or F: If $f_1 = \Theta(g_1)$ and $f_2 = O(g_2)$, then $f_1 + f_2 = \Theta(g_1 + g_2)$.
- Tor F: If $f_1 = \Theta(g_1)$ and $f_2 = \Theta(g_2)$, then $f_1 \times f_2 = \Theta(g_1 \times g_2)$.

Proving/Disproving Properties

- Start by trying to disprove.
- Easiest way: find a counterexample.
- Example: If $f = \Omega(h)$ and $g = \Omega(h)$, then $f = \Omega(g)$.
 - **False!** Let $f = n^3$, $g = n^5$, and $h = n^2$.

Proving the Property

- If you can't disprove, maybe it is true.
- Example:
 - Suppose $f_1 = O(g_1)$ and $f_2 = O(g_2)$.
 - Prove that $f_1 \times f_2 = O(g_1 \times g_2)$.

Step 1: State the assumption

- ► We know that $f_1 = O(g_1)$ and $f_2 = O(g_2)$.
- So there are constants c_1, c_2, N_1, N_2 so that for all $n \ge N$:

$$f_1(n) \le c_1 g_1(n)$$
 $(n \ge N_1)$
 $f_2(n) \le c_2 g_2(n)$ $(n \ge N_2)$

Step 2: Use the assumption

- Chain of inequalities, starting with $f_1 \times f_2$, ending with $\leq cg_1 \times g_2$.

 Using the following piece of information:

$$f_1(n) \le c_1 g_1(n)$$
 $(n \ge N_1)$
 $f_2(n) \le c_2 g_2(n)$ $(n \ge N_2)$

Analyzing Code

- The properties of Θ (and O and Ω) are useful when analyzing code.
- We can analyze pieces, put together the results.

Sums of Theta

- ► **Property**: If $f_1 = \Theta(g_1)$ and $f_2 = \Theta(g_2)$, then $f_1 + f_2 = \Theta(g_1 + g_2)$
- Used when analyzing sequential code.

Example

Say bar takes $Θ(n^3)$, baz takes $Θ(n^4)$.

```
Foo takes Θ(n^4 + n^3) = Θ(n^4).
```

baz is the bottleneck.

Products of Theta

► **Property**: If $f_1 = \Theta(g_1)$ and $f_2 = \Theta(g_2)$, then

$$f_1 \cdot f_2 = \Theta(g_1 \cdot g_2)$$

Useful when analyzing nested loops.

Example

```
def foo(n):
    for i in range(3*n + 4, 5n**2 - 2*n + 5):
        for j in range(500*n, n**3):
            print(i, j)
```

Careful!

If inner loop index depends on outer loop, you have to be more careful.

```
def foo(n):
    for i in range(n):
        for j in range(i):
            print(i, j)
```

DSC 40B Theoretical Foundations II

Lecture 3 | Part 5

Asymptotic Notation Practicalities

In this part...

- Other ways asymptotic notation is used.
- Asymptotic notation faux pas.
- Downsides of asymptotic notation.

Not Just for Time Complexity!

- We most often see asymptotic notation used to express time complexity.
- But it can be used to express any type of growth!

Example: Combinatorics

- Recall: $\binom{n}{k}$ is number of ways of choosing k things from a set of n.
- ► How fast does this grow with *n*? For fixed *k*:

$$\binom{n}{k} = \Theta(n^k)$$

Example: the number of ways of choosing 3 things out of n is $\Theta(n^3)$.

Example: Central Limit Theorem

Recall: the CLT says that the sample mean has a normal distribution with standard deviation $\sigma_{\rm pop}/\sqrt{n}$

► The **error** in the sample mean is: $O(1/\sqrt{n})$

Faux Pas

- Asymptotic notation can be used improperly.
 - Might be technically correct, but defeats the purpose.
- Don't do these in, e.g., interviews!

- ▶ Don't include constants, lower-order terms in the notation.
- ► **Bad:** $3n^2 + 2n + 5 = \Theta(3n^2)$.
- ► **Good:** $3n^2 + 2n + 5 = \Theta(n^2)$.
- It isn't wrong to do so, just defeats the purpose.

- Don't include base in logarithm.
- ▶ **Bad:** $\Theta(\log_2 n)$
- ▶ **Good:** $\Theta(\log n)$
- ► Why? $\log_2 n = c \cdot \log_3 n = c' \log_4 n = ...$

- ▶ Don't misinterpret meaning of $\Theta(\cdot)$.
- $f(n) = Θ(n^3)$ does **not** mean that there are constants so that $f(n) = c_3 n^3 + c_2 n^2 + c_1 n + c_0$.

- Time complexity is not a complete measure of efficiency.
- \triangleright $\Theta(n)$ is not always "better" than $\Theta(n^2)$.
- ► Why?

▶ Why? Asymptotic notation "hides the constants".

$$T_1(n) = 1,000,000n = \Theta(n)$$

$$T_2(n) = 0.00001n^2 = \Theta(n^2)$$

▶ But $T_1(n)$ is worse for all but really large n.

Main Idea

Time complexity is not the **only** way to measure efficiency, and it can be misleading.

Sometimes even a $\Theta(2^n)$ algorithm is better than a $\Theta(n)$ algorithm, if the data size is small.

DSC 40B Theoretical Foundations II

Lecture 3 | Part 6

The Movie Problem

The Movie Problem

The Movie Problem

- ► **Given**: an array movies of movie durations, and the flight duration t
- Find: two movies whose durations add to t.
 - ▶ If no two movies sum to t, return None.

Exercise

Design a brute force solution to the problem. What is its time complexity?

```
def find_movies(movies, t):
    n = len(movies)
    for i in range(n):
        for j in range(i + 1, n):
            if movies[i] + movies[j] == t:
                return (i, j)
    return None
```

Time Complexity

- It looks like there is a **best** case and **worst** case.
- ► How do we formalize this?

For the future...

Can you come up with a better algorithm?

What is the best possible time complexity?

DSC 40B Theoretical Foundations II

Lecture 3 | Part 7

Best and Worst Cases

Example 1: mean

```
def mean(arr):
    total = 0
    for x in arr:
        total += x
    return total / len(arr)
```

Time Complexity of mean

- Linear time, Θ(n).
- Depends only on the array's size, n, not on its actual elements.

Example 2: Linear Search

▶ **Given**: an array arr of numbers and a target t.

Find: the index of t in arr, or None if it is missing.

```
def linear_search(arr, t):
    for i, x in enumerate(arr):
        if x == t:
        return i
```

return None

Exercise

```
What is the time complexity of linear_search?

def linear_search(arr, t):
    for i, x in enumerate(arr):
        if x == t:
            return i
    return None
```

Observation

▶ It looks like there are two extreme cases...

The Best Case

- ▶ When the target, t, is the very first element.
- ► The loop exits after one iteration.
- ▶ Θ(1) time?

The Worst Case

- When the target, t, is not in the array at all.
- ► The loop exits after *n* iterations.
- \triangleright $\Theta(n)$ time?

Time Complexity

- linear_search can take vastly different amounts of time on two inputs of the same size.
 - Depends on actual elements as well as size.
- It has no single, overall time complexity.
- Instead we'll report best and worst case time complexities.

Best Case Time Complexity

How does the time taken in the **best case** grow as the input gets larger?

Definition

Define $T_{\text{best}}(n)$ to be the **least** time taken by the algorithm on any input of size n.

The asymptotic growth of $T_{\text{best}}(n)$ is the algorithm's best case time complexity.

Best Case

- In linear_search's **best case**, $T_{best}(n) = c$, no matter how large the array is.
- ► The **best case time complexity** is $\Theta(1)$.

Worst Case Time Complexity

How does the time taken in the worst case grow as the input gets larger?

Definition

Define $T_{\text{worst}}(n)$ to be the **most** time taken by the algorithm on any input of size n.

The asymptotic growth of $T_{\text{worst}}(n)$ is the algorithm's worst case time complexity.

Worst Case

- In the worst case, linear_search iterates through the entire array.
- ► The worst case time complexity is $\Theta(n)$.

Exercise

return None

```
What are the best case and worst case time com-
plexities of find_movies?

def find_movies(movies, t):
    n = len(movies)
    for i in range(n):
```

return (i, j)

if movies[i] + movies[j] == t:

for j in range(i + 1, n):

Best Case

- Best case occurs when movie 1 and movie 2 add to the target.
- Takes constant time, independent of number of movies.

 \triangleright Best case time complexity: Θ(1).

Worst Case

- Worst case occurs when no two movies add to target.
- ► Has to loop over all $Θ(n^2)$ pairs.
- ▶ Worst case time complexity: $\Theta(n^2)$.

Caution!

- ► The best case is never: "the input is of size one".
- The best case is about the **structure** of the input, not its **size**.

Not always constant time! Example: sorting.

Note

- An algorithm like linear_search doesn't have one single time complexity.
- An algorithm like mean does, since the best and worst case time complexities coincide.

Main Idea

Reporting **best** and **worst** case time complexities gives us a richer understanding of the performance of the algorithm.

DSC 40B Theoretical Foundation II

Lecture 3 | Part 8

Appendix: About Notation

A Common Mistake

- ► You'll sometimes see people equate $O(\cdot)$ with worst case and $Ω(\cdot)$ with best case.
- ► This isn't right!

Why?

- \triangleright $O(\cdot)$ expresses ignorance about a lower bound.
 - O(·) is like ≤
- $ightharpoonup \Omega(\cdot)$ expresses ignorance about an upper bound.
 - ▶ $\Omega(\cdot)$ is like ≥

Having both bounds is actually important here.

Example

- Suppose we said: "the worst case time complexity of find_movies is $O(n^2)$."
- Technically true, but not precise.
- This is like saying: "I don't know how bad it actually is, but it can't be worse than quadratic."
 - It could still be linear!"

Better: the worst case time complexity is $\Theta(n^2)$.

Example

- Suppose we said: "the best case time complexity of find_movies is $\Omega(1)$."
- This is like saying: "I don't know how good it actually is, but it can't be better than constant."
 - It could be linear!
- \triangleright Correct: the best case time complexity is $\Theta(1)$.

Put Another Way...

- ▶ It isn't **technically wrong** to say worst case for find_movies is $O(n^2)$...
- ▶ ...but it isn't **technically wrong** to say it is $O(n^{100})$, either!

DSC 40B Theoretical Foundations II

Lecture 3 | Part 9

Appendix: Asymptotic Notation and Limits

Limits and Θ , O, Ω

- You might prefer to use limits when reasoning about asymptotic notation.
- Warning! There are some tricky subtleties.
- Be able to "fall back" to the formal definitions.

Theta and Limits

► Claim: If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$, then $f(n) = \Theta(g(n))$.

Example: $4n^3 - 5n^2 + 50$.

Warning!

- Converse **isn't true**: if $f(n) = \Theta(g(n))$, it need not be that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$.
- ► The limit can be **undefined**.

Example: $5 + \sin(n) = \Theta(1)$, but the limit d.n.e.

Big-O and Limits

- If $\lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty$, then f(n) = O(g(n)).
- Namely, the limit can be zero. e.g., $n = O(n^2)$.

Big-O and Limits

- If $\lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty$, then f(n) = O(g(n)).
- Namely, the limit can be zero. e.g., $n = O(n^2)$.
- Warning! Converse not true. Limit may not exist.

Big-Omega and Limits

- If $\lim_{n\to\infty} \frac{f(n)}{g(n)} > 0$, then $f(n) = \Omega(g(n))$.
- ▶ Namely, the limit can be ∞. e.g., $n^2 = \Omega(n)$.

Big-Omega and Limits

- If $\lim_{n\to\infty} \frac{f(n)}{g(n)} > 0$, then $f(n) = \Omega(g(n))$.
- ▶ Namely, the limit can be ∞. e.g., $n^2 = \Omega(n)$.
- Warning! Converse not true. Limit may not exist.

Good to Know

- log_b n grows slower than n^p , as long as p > 0.
- Example:

$$\lim_{n \to \infty} \frac{\log_2 n}{n^{0.000001}} = 0$$