
Lecture 5 | Part 1

Searching a Database

Today in DSC 40B...▶ How do we analyze the time complexity of
recursive algorithms?▶ How do we know that our recursive code is
correct?

Databases▶ Large data sets are often stored in databases.

PID FullName Level

A1843 Wan Xuegang SR
A8293 Deveron Greer SR
A9821 Vinod Seth FR
A8172 Aleix Bilbao JR
A2882 Kayden Sutton SO
A1829 Raghu Mahanta FR
A9772 Cui Zemin SR⋮ ⋮ ⋮

Query▶ What is the name of the student with PID A8172?

Linear Search▶ We could answer this with a linear search.▶ Recall worst-case time complexity: Θ(𝑛).▶ Is there a better way?

Theoretical Lower Bounds▶ Given: an array arr and a target t, determine the
index of t in the array.▶ Lower bound: Ω(𝑛)▶ linear_search has the best possible worst-case

complexity!

Theoretical Lower Bounds▶ Given: an sorted array arr and a target t,
determine the index of t in the array.▶ This is an easier problem.▶ Lower bound: Ω(?)

Lecture 5 | Part 2

Binary Search

A B C D E F G

22 84 101 14 19 42 20

A B C D E F G

Game Show▶ Goal: guess the door with number 42 behind it.▶ Caution: with every wrong guess, your winnings
are reduced.

Strategy▶ Can’t do much better than linear search.▶ “Is it door A?”▶ “OK, is it door B?”▶ “Door C?”▶ After an incorrect first guess, the right door could
be any of the other 𝑛 − 1 doors!

But now...▶ Suppose the host tells you that the numbers are
sorted in increasing order.

14 19 20 22 42 84 101

Exercise
Which door do you pick first?

A B C D E F G

A B C D E F G22

A B C D E F G22 84

A B C D E F G22 42 84

Strategy▶ First pick the middle door.▶ Allows you to rule out half of the other doors.▶ Pick door in the middle of what remains.▶ Repeat, recursively.

Binary Search in Code
def binary_search(arr, t, start, stop):

”””
Searches arr[start:stop] for t.
Assumes arr is sorted.
”””
if stop - start <= 0:

return None
middle = ___________ # index of the middle element
if arr[middle] == t:

return middle
elif arr[middle] > t:

return binary_search(arr, t, ______, ______)
else:

return binary_search(arr, t, ______, ______)

- F- - J -
-

↑
start ↑

arr [1 : 4] stop

left

right

Exercise
Fill in the blanks:
def binary_search(arr, t, start, stop):

”””
Searches arr[start:stop] for t.
Assumes arr is sorted.
”””
if stop - start <= 0:

return None
middle = ___________ # index of the middle element
if arr[middle] == t:

return middle
elif arr[middle] > t:

return binary_search(arr, t, ______, ______)
else:

return binary_search(arr, t, ______, ______)

The Middle Element▶ What is the index of the middle element of
arr[start:stop]?

-10
0

-6
1

-3
2

1
3

2
4

5
5

12
6

21
7

33
8

35
9

42
10

Rounding Down (Statstop

I
-

1)
Start=3 start= 3

Stop =S Stop = 5 =J

Definition
The floor of a real number 𝑥, denoted ⌊𝑥⌋, is the
largest integer that is ≤ 𝑥.

Examples: ⌊3.14⌋ = 3 ⌊−4.5⌋ = −5 ⌊10⌋ = 10
In LATEX, ⌊𝑥⌋ is written: “\lfloor x \rfloor”.

Definition
The ceiling of a real number 𝑥, denoted ⌈𝑥⌉, is the
smallest integer that is ≥ 𝑥.

Examples: ⌈3.14⌉ = 4 ⌈−4.5⌉ = −4 ⌈10⌉ = 10
In LATEX, ⌈𝑥⌉ is written: “\lceil x \rceil”.

Binary Search
import math
def binary_search(arr, t, start, stop):

”””
Searches arr[start:stop] for t.
Assumes arr is sorted.
”””
if stop - start <= 0:

return None
middle = math.floor((start + stop)/2)
if arr[middle] == t:

return middle
elif arr[middle] > t:

return binary_search(arr, t, start, middle)
else:

return binary_search(arr, t, middle+1, stop)

left :
start to mid

&

d

righ
mid to

to

import math
def binary_search(arr, t, start, stop):

”””
Searches arr[start:stop] for t.
Assumes arr is sorted.
”””
if stop - start <= 0:

return None
middle = math.floor((start + stop)/2)
if arr[middle] == t:

return middle
elif arr[middle] > t:

return binary_search(arr, t, start, middle)
else:

return binary_search(arr, t, middle+1, stop)

t = 21

-10

0

-6

1

-3

2

1

3

2

4

5

5

12

6

21

7

33

8

35

9

42

10

-artto me
he

Aside: Default Arguments
import math
def binary_search(arr, t, start=0, stop=None):

if stop is None:
stop = len(arr)

if stop - start <= 0:
return None

middle = math.floor((start + stop)/2)
if arr[middle] == t:

return middle
elif arr[middle] > t:

return binary_search(arr, t, start, middle)
else:

return binary_search(arr, t, middle+1, stop)

Lecture 5 | Part 3

Thinking Inductively

Recursion▶ Recursive algorithms can almost look like magic.▶ How can we be sure that binary_search works?

Tips
1. Make sure algorithm works in the base case.

2. Check that all recursive calls are on smaller
problems.

3. Assuming that the recursive calls work, does the
whole algorithm work?

Base Case▶ Smallest input for which you can easily see that
the algorithm works.▶ Recursion works by making problem smaller
until base case is reached.▶ Usually 𝑛 = 0 or 𝑛 = 1 (or even both!)

Base Case: 𝑛 = 0▶ Suppose arr[start:stop] is empty.▶ In this case, the function returns None.▶ Correct!

Base Case: 𝑛 = 1▶ Suppose arr[start:stop] has one element.▶ If that element is the target, the algorithm will
find it.▶ Correct!▶ If it isn’t, the algorithm will recurse on a problem
of size 0 and return None.▶ Correct!

t = 2)

[42]
start = 0 Stop = 1

mid=J = 0

left cal : Start = 0

Stop = 0

Recursive Calls▶ Recursive calls must be on smaller problems.▶ Otherwise, base case never reached. Infinite
recursion!

import math
def binary_search(arr, t, start, stop):

”””
Searches arr[start:stop] for t.
Assumes arr is sorted.
”””
if stop - start <= 0:

return None
middle = math.floor((start + stop)/2)
if arr[middle] == t:

return middle
elif arr[middle] > t:

return binary_search(arr, t, start, middle)
else:

return binary_search(arr, t, middle+1, stop)

import math
def binary_search(arr, t, start, stop):

”””
Searches arr[start:stop] for t.
Assumes arr is sorted.
”””
if stop - start <= 0:

return None
middle = math.floor((start + stop)/2)
if arr[middle] == t:

return middle
elif arr[middle] > t:

return binary_search(arr, t, start, middle)
else:

return binary_search(arr, t, middle+1, stop)▶ Is arr[start:middle] smaller than arr[start:stop]?▶ Is arr[middle+1:stop] smaller than arr[start:stop]? Jesdes

Leap of Faith▶ Assume the recursive calls work.▶ Does the overall algorithm work, then?

import math
def binary_search(arr, t, start, stop):

”””
Searches arr[start:stop] for t.
Assumes arr is sorted.
”””
if stop - start <= 0:

return None
middle = math.floor((start + stop)/2)
if arr[middle] == t:

return middle
elif arr[middle] > t:

return binary_search(arr, t, start, middle)
else:

return binary_search(arr, t, middle+1, stop)

Exercise
Does this code work? Why or why not?

import math
def summation(numbers):

n = len(numbers)
if n == 0:

return 0
middle = math.floor(n / 2)
return (

summation(numbers[:middle])
+
summation(numbers[middle:])

)

& 5]

mid= 0 = (+2)

number[0 :0] O

numbers 20 : 17 (5)

Induction▶ These steps can be turned into a formal proof by
induction.▶ For us, less necessary to prove to other people.▶ Instead, prove to yourself that your code works.▶ We won’t be doing formal inductive proofs.

Why does this work?▶ Show that it works for size 1 (base case).▶ ⟹ will work for size 2 (inductive step).▶ ⟹ will work for sizes 3, 4 (inductive step).▶ ⟹ will work for sizes 5, 6, 7, 8 (inductive step).

Lecture 5 | Part 4

Recurrence Relations

Time Complexity of Binary Search▶ What is the time complexity of binary_search?▶ No loops!

Best Case
import math
def binary_search(arr, t, start, stop):

”””
Searches arr[start:stop] for t.
Assumes arr is sorted.
”””
if stop - start <= 0:

return None
middle = math.floor((start + stop)/2)
if arr[middle] == t:

return middle
elif arr[middle] > t:

return binary_search(arr, t, start, middle)
else:

return binary_search(arr, t, middle+1, stop)

f(1)

Worst Case
Let 𝑇(𝑛) be worst case time on input of size 𝑛.
import math
def binary_search(arr, t, start, stop):

”””
Searches arr[start:stop] for t.
Assumes arr is sorted.
”””
if stop - start <= 0:

return None
middle = math.floor((start + stop)/2)
if arr[middle] == t:

return middle
elif arr[middle] > t:

return binary_search(arr, t, start, middle)
else:

return binary_search(arr, t, middle+1, stop)

T(n) = (1) + T(u/z)

o [

Recurrence Relations▶ We found 𝑇(𝑛) = {𝑇(𝑛/2) + Θ(1), 𝑛 ≥ 2Θ(1), 𝑛 = 1▶ This is a recurrence relation.

Solving Recurrences▶ We want simple, non-recursive formula for 𝑇(𝑛)
so we can see how fast 𝑇(𝑛) grows.▶ Is it Θ(𝑛)? Θ(𝑛2)? Something else?▶ Obtaining a simple formula is called solving the
recurrence.

Example: Getting Rich▶ Suppose on day 1 of job, you are paid $3.▶ Each day thereafter, your pay is doubled.▶ Let 𝑆(𝑛) be your pay on day 𝑛:𝑆(𝑛) = {2 ⋅ 𝑆(𝑛 − 1), 𝑛 ≥ 23, 𝑛 = 1

Example: Unrolling

𝑆(𝑛) = {2 ⋅ 𝑆(𝑛 − 1), 𝑛 ≥ 23, 𝑛 = 1▶ Take 𝑛 = 4.
S(4) = 2 . S(3)

= 2 . (2 . S(2)] = 4 . S(2)

- 4 . [25(1)] = 8 . S(I)

= 8 . 3 = 24

Solving Recurrences
We’ll use a four-step process to solve recurrences:

1. “Unroll” several times to find a pattern.

2. Write general formula for 𝑘th unroll.
3. Solve for # of unrolls needed to reach base case.

4. Plug this number into general formula.

Step 1: Unroll several times𝑆(𝑛) = {2 ⋅ 𝑆(𝑛 − 1), 𝑛 ≥ 23, 𝑛 = 1
S(n) = 2 . S(n - 1)

= 2 . 2S(n - 2) = 4 . S(u - 2)

= 2 .
2 . 2 . S(n - 3) = 8 S(n -3)

i

k -+h ?

Step 2: Find general formula𝑆(𝑛) = 2 ⋅ 𝑆(𝑛 − 1)= 2 ⋅ 2 ⋅ 𝑆(𝑛 − 2)= 2 ⋅ 2 ⋅ 2 ⋅ 𝑆(𝑛 − 3)
On step 𝑘:

1= 1

k = 2

k = 3

s(n) =
2 .
S(n- k)

Step 3: Find step # of base case▶ On step 𝑘, 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).▶ When do we see 𝑆(1)?
when n - k = 1 => k = n- 1

S(n) = 2
++

.

S (n - (n-1)
= 2n

- 1
· s(1)

= 2

- 1

.
3

Step 4: Plug into general formula▶ From step 2: 𝑆(𝑛) = 2𝑘 ⋅ 𝑆(𝑛 − 𝑘).▶ From step 3: Base case of 𝑆(1) reached when𝑘 = 𝑛 − 1.▶ So:
S(n) = 2

"t

. 5(1)

= 21
-

1
. 3

Solving the Recurrence▶ We have solved the recurrence1:𝑆(𝑛) = 3 ⋅ 2𝑛−1▶ This is the exact solution. The asymptotic
solution is 𝑆(𝑛) = Θ(2𝑛).▶ We’ll call this method “solving by unrolling”.

1On day 20, you’ll be paid ≈1.5 million dollars.

== .

2
= 8(2)

Lecture 5 | Part 5

Binary Search Recurrence

Binary Search▶ What is the time complexity of binary_search?▶ Best case: Θ(1).▶ Worst case:𝑇(𝑛) = {𝑇(𝑛/2) + Θ(1), 𝑛 ≥ 2Θ(1), 𝑛 = 1

Simplification▶ When solving, we can replace Θ(𝑓(𝑛)) with 𝑓(𝑛):𝑇(𝑛) = {𝑇(𝑛/2) + 1, 𝑛 ≥ 21, 𝑛 = 1▶ As long as we state final answer using Θ notation!

Another Simplification▶ When solving, we can assume 𝑛 is a power of 2.

Step 1: Unroll several times𝑇(𝑛) = {𝑇(𝑛/2) + 1, 𝑛 ≥ 21, 𝑛 = 1
T(n) = +(2) +

= [+ in) + 1 + 1
=
+((y) + 2

= [T(((8) +1] + 2 = T(Y/y) + 3

i
k-+h ?

Step 2: Find general formula𝑇(𝑛) = 𝑇(𝑛/2) + 1= 𝑇(𝑛/4) + 2= 𝑇(𝑛/8) + 3
On step 𝑘:

k=

k= 2

K= 3

T(n) = +(4/2k) +
↑

Step 3: Find step # of base case▶ On step 𝑘, 𝑇(𝑛) = 𝑇(𝑛/2𝑘) + 𝑘▶ When do we see 𝑇(1)?
set n/2k = => n =

2 => legn = k

Step 4: Plug into general formula▶ 𝑇(𝑛) = 𝑇(𝑛/2𝑘) + 𝑘▶ Base case of 𝑇(1) reached when 𝑘 = log2 𝑛.▶ So: + (n) = T (gi) + logn

= T(1) + logn = A(l) + logn2 = Allagn)

Note▶ Remember: log𝑏 𝑥 = (log𝑎 𝑥)/(log𝑎 𝑏)▶ So we don’t write Θ(log2 𝑛)▶ Instead, just: Θ(log 𝑛)

Time Complexity of Binary Search▶ Best case: Θ(1)▶ Worst case: Θ(log 𝑛)

Is binary search fast?▶ Suppose all 1019 grains of sand are assigned a
unique number, sorted from least to greatest.▶ Goal: find a particular grain.▶ Assume one basic operation takes 1 nanosecond.

▶ Linear search: 317 years.▶ Binary search: ≈ 60 nanoseconds.

Is binary search fast?▶ Suppose all 1019 grains of sand are assigned a
unique number, sorted from least to greatest.▶ Goal: find a particular grain.▶ Assume one basic operation takes 1 nanosecond.▶ Linear search: 317 years.

▶ Binary search: ≈ 60 nanoseconds.

Is binary search fast?▶ Suppose all 1019 grains of sand are assigned a
unique number, sorted from least to greatest.▶ Goal: find a particular grain.▶ Assume one basic operation takes 1 nanosecond.▶ Linear search: 317 years.▶ Binary search: ≈ 60 nanoseconds.

Exercise
Binary search seems so much faster than linear
search. What’s the caveat?

Caveat▶ The array must be sorted.▶ This takes Ω(𝑛) time.

Why use binary search?▶ If data is not sorted, sorting + binary search
takes longer than linear search.▶ But if doing multiple queries, looking for nearby
elements, sort once and use binary search after.

Theoretical Lower Bounds▶ A lower bound for searching a sorted list isΩ(log 𝑛).▶ This means that binary search has optimal worst
case time complexity.

Databases▶ Some database servers will sort by key, use
binary search for queries.▶ Often instead of sorting, B-Tree indexes are
used.▶ But sorting + binary search still used when space
is limited.

