
Lecture 6 | Part 1

Selection Sort and Loop Invariants

Sorting
▶ Sorting is a very common operation.

▶ But why is it important?

▶ A e s t h e t i c reasons?

▶ Sorting makes some problems easier to solve.

Sorting
▶ Sorting is a very common operation.

▶ But why is it important?

▶ A e s t h e t i c reasons?

▶ Sorting makes some problems easier to solve.

Sorting
▶ Sorting is a very common operation.

▶ But why is it important?

▶ A e s t h e t i c reasons?

▶ Sorting makes some problems easier to solve.

Today
▶ How do we sort?

▶ How fast can we sort?

▶ How do we use sorted structure to write faster
algorithms?

Today
▶ Also: how to understand complex loops with
loop invariants.

Selection Sort
▶ Repeatedly remove smallest element.

▶ Put it at beginning of new list.

Example: arr = [5, 6, 3, 2, 1]

In-place Selection Sort
▶ We don’t need a separate list.

▶ We can swap elements until sorted.

▶ Store “new” list at the beginning of input list.

▶ Separate the old and new with a barrier.

Example: arr = [5, 6, 3, 2, 1]

def selection_sort(arr):
”””In-place selection sort.”””
n = len(arr)
if n <= 1:

return
for barrier_ix in range(n-1):

find index of min in arr[start:]
min_ix = find_minimum(arr, start=barrier_ix)
#swap
arr[barrier_ix], arr[min_ix] = (

arr[min_ix], arr[barrier_ix]
)

def find_minimum(arr, start):
”””Finds index of minimum. Assumes non-empty.”””
n = len(arr)
min_value = arr[start]
min_ix = start
for i in range(start + 1, n):

if arr[i] < min_value:
min_value = arr[i]
min_ix = i

return min_ix

Loop Invariants
▶ How we understand an iterative algorithm?

▶ A loop invariant is a statement that is true after
every iteration.
▶ And before the loop begins!

Loop Invariant(s)
After the 𝛼th iteration of selection sort, each of the
first 𝛼 elements is ≤ each of the remaining elements.

Example: arr = [5, 6, 3, 2, 1]

Loop Invariant(s)
After the 𝛼th iteration, the first 𝛼 elements are sorted.

Example: arr = [5, 6, 3, 2, 1]

Loop Invariants
▶ Plug the total number of iterations into the loop
invariant to learn about the result.

▶ selection_sort makes 𝑛 − 1 iterations:

▶ After the (𝑛 − 1)th iteration, the first (𝑛 − 1) elements
are sorted.

▶ After the (𝑛 − 1)th iteration, each of the first (𝑛 − 1)
elements is ≤ each of the remaining elements.

Time Complexity
def selection_sort(arr):

”””In-place selection sort.”””
n = len(arr)
if n <= 1:

return
for barrier_ix in range(n-1):

find index of min in arr[barrier_ix:]
min_value = arr[barrier_ix]
min_ix = barrier_ix
for i in range(barrier_ix + 1, n):

if arr[i] < min_value:
min_value = arr[i]
min_ix = i

#swap
arr[barrier_ix], arr[min_ix] = (

arr[min_ix], arr[barrier_ix]
)

Time Complexity

▶ Selection sort takes Θ(𝑛2) time.

Exercise
Modify selection_sort so that it computes ame-
dian of the input array. What is the time complex-
ity?

def selection_sort(arr):
”””In-place selection sort.”””
n = len(arr)
if n <= 1:

return
for barrier_ix in range(n-1):

find index of min in arr[start:]
min_ix = find_minimum(arr, start=barrier_ix)
#swap
arr[barrier_ix], arr[min_ix] = (

arr[min_ix], arr[barrier_ix]
)

Lecture 6 | Part 2

Mergesort

Can we sort faster?
▶ The tight theoretical lower bound for
comparison sorting is Θ(𝑛 log 𝑛).

▶ Selection sort is quadratic.

▶ How do we sort in Θ(𝑛 log 𝑛) time?

Mergesort
▶ Mergesort is a fast sorting algorithm.

▶ Has best possible (worst-case) time complexity:
Θ(𝑛 log 𝑛).

▶ Implements divide/conquer/recombine strategy.

The Idea
▶ Divide: split the array into halves

▶ [6,1,9,2,4,3]→ [6,1,9], [2,4,3]

▶ Conquer: sort each half, recursively
▶ [6,1,9]→ [1,6,9] and [2,4,3]→ [2,3,4]

▶ Combine: merge sorted halves together
▶ [1,6,9], [2,3,4]→ [1,2,3,4,6,9]

Aside: splitting arrays
▶ Splitting an array in half by slicing:

>>> arr = [9, 1, 4, 2, 5]
>>> middle = math.floor(len(arr) / 2)
>>> arr[:middle]
[9, 1]
>>> arr[middle:]
[4, 2, 5]

▶ Warning! Creates a copy!

Mergesort

def mergesort(arr):
”””Sort array in-place.”””
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

The Idea
7 3 1 6 2 5 8 4

7 3 1 6 2 5 8 4

7 3 1 6 2 5 8 4

7 3 1 6 2 5 8 4

3 7 1 6 2 5 4 8

1 3 6 7 2 4 5 8

1 2 3 4 5 6 7 8

Understanding Mergesort
1. What is the base case?

2. Are the recursive problems smaller?

3. Assuming the recursive calls work, does the
whole algorithm work?

1. Base Case: 𝑛 = 1
▶ Arrays of size one are trivially sorted.

▶ Returns immediately. Correct!

2. Smaller Problems?
▶ Are arr[:middle] and arr[middle:] always
smaller than arr?

▶ Try it for len(arr) == 2.

3. Does it Work?
▶ Assume mergesort works on arrays of size < 𝑛.

▶ Does it work on arrays of size 𝑛?

Mergesort

def mergesort(arr):
”””Sort array in-place.”””
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

Lecture 6 | Part 3

Merge

Merging
▶ We have sorted each half.

▶ Now we need to merge together.

▶ Note: this is an example of a problem that is
made easier by sorting.

Merging
▶ We have sorted each half.

▶ Now we need to merge together.

▶ Note: this is an example of a problem that is
made easier by sorting.

merge

8753 621

merge

8753 62

1

merge

8753 6

1 2

merge

875 6

1 2 3

merge

87 6

1 2 3 5

merge

87

1 2 3 5 6

merge

8

1 2 3 5 6 7

merge

1 2 3 5 6 8

merge
def merge(left, right, out):

”””Merge sorted arrays, store in out.”””
left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

Loop Invariant
▶ Assume left and right are sorted.

▶ Loop invariant: After 𝛼th iteration,
out[:𝛼] == sorted(left + right)[:𝛼]

Key of mergesort
▶ merge is where the actual sorting happens.

▶ Example: merge([3], [1], ...) results in
[1,3]

Time Complexity of merge
def merge(left, right, out):

”””Merge sorted arrays, store in out.”””
left.append(float('inf'))
right.append(float('inf'))
left_ix = 0
right_ix = 0

for ix in range(len(out)):
if left[left_ix] < right[right_ix]:

out[ix] = left[left_ix]
left_ix += 1

else:
out[ix] = right[right_ix]
right_ix += 1

Lecture 6 | Part 4

Time Complexity of Mergesort

Time Complexity
def mergesort(arr):

”””Sort array in-place.”””
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

Aside: Copying
▶ What is arr[:middle] doing “under the hood”?

▶ What is the time complexity?

The Recurrence
def mergesort(arr):

”””Sort array in-place.”””
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
mergesort(left)
mergesort(right)
merge(left, right, arr)

Solving the Recurrence
𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Optimality
▶ Theorem: Any (comparison) sorting algorithm’s
worst-case time complexity must be Ω(𝑛 log 𝑛).

▶ Mergesort is optimal!

Be Careful!
▶ It is possible for a sorting algorithm to have a
best case time complexity smaller than 𝑛 log 𝑛.
▶ Insertion sort, for example.

▶ Mergesort has best case time complexity of
Θ(𝑛 log 𝑛).

▶ Mergesort is sub-optimal in this sense!

Be Careful!
▶ The Θ(𝑛 log 𝑛) lower-bound is for comparison
sorting.

▶ It is possible to sort in worst-case Θ(𝑛) time
without comparing.1

1Bucket sort, radix sort, etc.

What if?
▶ Divide: split the array into halves

▶ Conquer: sort each half using selection sort

▶ Combine: merge sorted halves together

mergeselectionsort
def mergeselectionsort(arr):

”””Sort array in-place.”””
if len(arr) > 1:

middle = math.floor(len(arr) / 2)
left = arr[:middle]
right = arr[middle:]
selection_sort(left)
selection_sort(right)
merge(left, right, arr)

Exercise
What is the time complexity of this algorithm?

Lecture 6 | Part 5

Using Sorted Structure

Sorted structure is useful
▶ Some problems become much easier if input is
sorted.
▶ For example, median, minimum, maximum.

▶ Sorting is useful as a preprocessing step.

Recall: The Movie Problem
▶ You’re on a flight that will last 𝐷 minutes.

▶ You want to pick two movies to watch.

▶ You want the total time of the two movies to be
as close as possible to 𝐷.

The Movie Problem
▶ Brute force algorithm: Θ(𝑛2)

▶ We can do better, if movie times are sorted.

Example
▶ Flight duration 𝐷 = 155
▶ Movie times: 60, 80, 90, 120, 130

60 80 90 120 130
60
80
90
120
130

Best pair:

The Algorithm
▶ Keep index of shortest and longest remaining.

▶ On every iteration, pair the shortest and longest.

▶ If this pair is too long, remove longest movie;
otherwise remove shortest.
▶ If times are sorted, finding new longest/shortest
movie takes Θ(1) time!

60, 80, 90, 120, 130

The Algorithm
def optimize_entertainment(times, target):

”””assume times is sorted.”””
shortest = 0
longest = len(times) - 1

best_pair = (shortest, longest)
best_objective = None

for i in range(len(times) - 1):
total_time = times[shortest] + times[longest]

if abs(total_time - target) < best_objective:
best_objective = abs(total_time - target)
best_pair = (shortest, longest)

if total_time == target:
return (shortest, longest)

elif total_time < target:
shortest += 1

else: # total_time > target
longest -= 1

return best_pair

Main Idea
Sorted structure allows you to rule out possibilities
without explicitly checking them. But, it requires
you to spend the time sorting first.

Tip: when designing an algorithm, think about
sorting the input first.

