DSC 40B Theoretical Foundations II

#### Lecture 7 | Part 1

#### **The Median and Order Statistics**

## The Median

How fast can we find a **median** of *n* numbers?

## Algorithms

We have seen several ways of computing a median:
 Alg. 1: Minimize absolute error, brute force.
 Alg. 2: Use definition (half ≤, half ≥).
 ...

#### Exercise

Using what we know so far, what approach for finding the median has the best **worst-case time complexity**?

#### Best so far...

- Sort the list with mergesort, return middle element.
- Time complexity:  $\Theta(n \log n)$ .

## Is sorting necessary?

- Need to sort the whole list just to find middle?
- Seems like more work than necessary.

# Today

- We'll design an algorithm which runs in Θ(n) expected time.
- Much more useful than just finding median...

### **Order Statistics**

The median is an example of an order statistic.

#### Definition

Given *n* numbers, the *k*th order statistic is the *k*th smallest number in the collection.

### Example

- ▶ 1st order statistic: \_ 77
- 2nd order statistic: -12
- ▶ 4th order statistic: 99

#### Exercise

Some special cases of order statistics go by different names. Can you think of some?

### **Special Cases**

- Minimum: 1st order statistic.
- Maximum: *n*th order statistic.
- **Median**: [n/2]th order statistic<sup>1</sup>.
- *p*th Percentile:  $\left[\frac{p}{100} \cdot n\right]$ th order statistic.

<sup>1</sup>What if *n* is even?

## Goal

- **Fast** algorithm for computing any order statistic.
- Interestingly, some seem easier than others.
- Our algorithm will find any order statistic in Θ(n) expected time.

### Approach #1

- We can modify selection\_sort to find the kth order statistic.
- Loop invariant: after kth iteration, first k elements are in final sorted order.

```
def selection_sort(arr):
    """In-place selection sort."""
    n = len(arr)
    if n <= 1:
        return
    for barrier ix in range(n-1):
        # find index of min in arr[start:]
        min_ix = find_minimum(arr, start=barrier_ix)
        #swap
        arr[barrier ix], arr[min ix] = (
                arr[min_ix], arr[barrier_ix]
```

```
def select k(arr, k):
    """Find kth order statistic."""
    n = len(arr)
    if n <= 1:
        return
    for barrier ix in range(k):
        # find index of min in arr[start:]
        min ix = find minimum(arr, start=barrier ix)
        #swap
        arr[barrier ix], arr[min ix] = (
                arr[min ix]. arr[barrier ix]
    return arr[k-1]
```

#### Exercise

What are the best case and worst case time complexities of select\_k?

#### Approach #1

- ▶ 1st order statistic:  $\Theta(n)$ .
- *n*th order statistic:  $\Theta(n^2)$ .
- Median:  $\Theta(n^2)$ .
- kth order statistic: Θ(kn).

#### Exercise

Describe how to find any order statistic in  $\Theta(n \log n)$  time.

#### Approach #2

- Sort with mergesort, return arr[k-1]
- $\Theta(n \log n)$  time. Could be better...

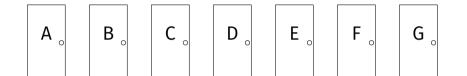
DSC 40B Theoretical Foundations II

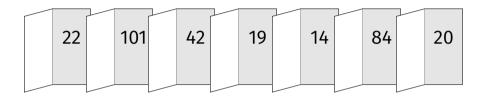
Lecture 7 | Part 2

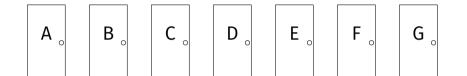
Quickselect

### The Goal

- Given a collection of n numbers and an order, k.
- Find the *k*th smallest number in the collection.

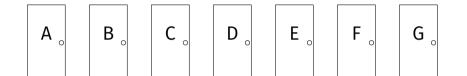


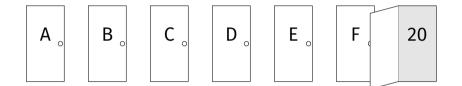


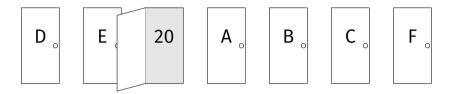


### **Game Show**

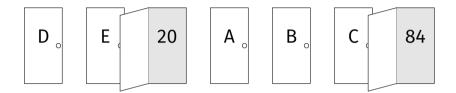
- **Goal**: tell the host the **largest** number.
- Caution: with every door opened, your money is reduced.
- Twist: After opening a door, the host tells you:
  - which doors are smaller.
  - which doors are larger.
  - they partition the doors into higher and lower by moving them.

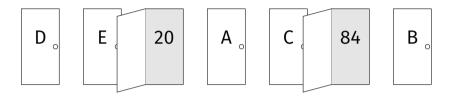




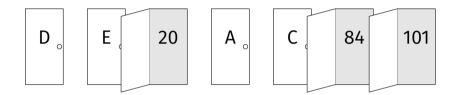


after partitioning





after partitioning



#### Main Idea

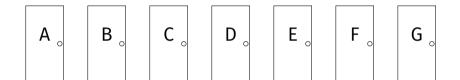
After partitioning, the just-opened door is in the **correct place** in the sorted order (but the other doors may not be).

But, every door to the left is smaller ( $\leq$ ), every door to the right is larger ( $\geq$ ).

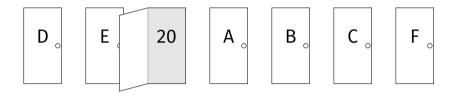
### In general...

Let's generalize strategy for kth order statistic.

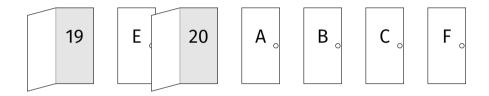
► Example: *k* = 2.

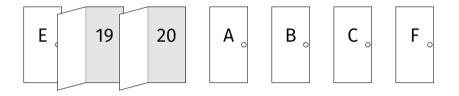






after partitioning





after partitioning

### Strategy

Open arbitrary door (that hasn't been ruled out).

- Partition the doors around this number:
  - Move doors smaller than this to the left,
  - Larger than this to the right.
- Let p be our door's new position, k be the order we want.
  - If p = k, return this door.
  - If p < k, rule out doors to left.</p>
  - If p > k, rule out doors to right.

Repeat.

### In Code

```
import random
def quickselect(arr, k, start, stop):
    """Finds kth order statistic in numbers[start:stop])"""
    pivot ix = random.randrange(start, stop)
    pivot ix = partition(arr. start. stop. pivot ix)
    pivot order = pivot ix + 1
    if pivot order == k:
        return arr[pivot ix]
    elif pivot order < k:</pre>
        return quickselect(arr, k, pivot_ix + 1, stop)
    else:
        return guickselect(arr, k, start, pivot ix)
```

### Example

arr = 
$$[77, 42, 11, 99, 0, 101]$$
 k = 3  
11, 0, 42, 77, 99, 101

DSC 40B Theoretical Foundations II

Lecture 7 | Part 3

Partition

## Paritioning

- Given an array of *n* numbers and the index of a pivot *p*.
- Rearrange elements so that:
   Everything
  - Everything 
     Everything = p is next.
  - Everything > p is lext.
  - $\sim$  Everything > p is last.
- ▶ Return index of first element  $\ge p$ .

```
def partition(arr, start, stop, pivot ix):
                      """Partition arr[start:stop] around pivot."""
                     left = []
                      pivot count = \odot
                     right = []
                     pivot = arr[pivot ix]
                    for ix in range(start, stop):
      O(M)
if arr[ix] < pivot:
    left.append(arr[ix])
elif arr[ix] == pivot:
    pivot_count += 1
else:</pre>
                                 right.append(arr[ix])
                     ix = start
θ(Λ)

for x in left:

arr[ix] = x

ix += 1

for i in range(pivot_count):

arr[ix] = pivot

ix += 1

for x in right:

arr[ix] = x

ix += 1
                      return start + len(left)
```

### Partition

- partition takes O(n) time.
   This is optimal.
- But we can use memory more efficiently.

### Motivation

Similar to selection sort, we'll use **two** barriers:

"Middle" barrier:

- ▶ Separates things < pivot from things ≥</p>
- Points to first thing in "right"
- "End" barrier:
  - Separates processed from processed.
  - Points to first unprocessed thing.

### Example

Simplification: start by moving pivot to end. arr = [77, 42, 11, 99, 0, 101] pivot = 1 11, 0, 42, 99, 01, 77

```
def in place partition(arr. start. stop. pivot ix):
    def swap(ix 1, ix 2):
        arr[ix 1], arr[ix 2] = arr[ix 2], arr[ix 1]
    pivot = arr[pivot ix]
    swap(pivot ix, stop-1)
    middle barrier = start
    for end barrier in range(start. stop - 1):
        if arr[end barrier] < pivot:</pre>
            swap(middle_barrier, end_barrier)
            middle barrier += 1
        # else:
            # do nothing
    swap(middle barrier, stop-1)
    return middle_barrier
```

### Efficiency

- Also takes  $\Theta(n)$  time.
- ► No auxiliary memory required.

DSC 40B Theoretical Foundations II

Lecture 7 | Part 4

**Time Complexity Analysis** 

### Time Complexity

What is time complexity of quickselect?

```
import random
def guickselect(arr, k, start, stop):
    """Finds kth order statistic in numbers[start:stop])"""
    pivot ix = random.randrange(start, stop)
                                                        \Theta(n)
    pivot_ix = partition(arr, start, stop, pivot_ix)
    pivot order = pivot ix + 1
    if pivot order == k:
        return arr[pivot ix]
    elif pivot order < k:</pre>
        return guickselect(arr, k, pivot ix + 1, stop)
    else:
```

### Problem

# We don't know the size of the subproblem. Is random, can be anywhere from 1 to n - 1.

Difficult to write recurrence relation.

### **Good and Bad Pivots**

Some pivots are better than others.
 Good: splits array into roughly balanced halves.
 Bad: splits array into wildly unbalanced pieces.

#### Exercise

Suppose we're searching for the minimum. What would be the worst possible pivot?

#### **Worst Case**

Suppose we're searching for k = 1 (minimum).

Worst pivot: the maximum.

Worst case: use max as pivot every time.

▶ Subproblem size: *n* – 1.

#### **Worst Case**

Every recursive call is on problem of size n - 1.

Intuitively, randomly choosing largest number as pivot every time is very unlikely!

$$\frac{1}{n} \times \frac{1}{n-1} \times \frac{1}{n-2} \times \dots \times \frac{1}{3} \times \frac{1}{2} = \frac{1}{n!}$$

### **Equally Unlikely**

- Pivot falls exactly in the middle, every time.
- Subproblems are of size n/2.

# Typically

- Pivot falls somewhere in the middle.
- Sometimes **good**, sometimes **bad**.
- But good pivots reduce problem size by so much that they make up for bad pivots.

### Analogy

- ► You're 100 miles away from home.
- You have a button that, if you press it, teleports you 1 mile closer to home.
- How many times must you press it before you're 1 mile away from home?

### Analogy

You're 100 miles away from home.

- You have a button that, if you press it, teleports you half the distance to home.
- How many times must you press it before you're 1 mile away from home?

### Analogy

- ► You're 100 miles away from home.
- You have a button that, if you press it, teleports you half the distance to home with probability 1/2, does nothing with probability 1/2.
- How many times must you press it before you're 1 mile away from home?

### Analysis

- We'll call a pivot **good** if it falls in  $[\frac{n}{4}, \frac{3n}{4}]$ .
  - Probability: 1/2
  - Max problem size: 3n/4.
- We'll call a pivot **bad** if it falls outside  $\left[\frac{n}{4}, \frac{3n}{4}\right]$ .
  - Probability: 1/2
  - ▶ Max problem size: *n* 1.



#### T(n) = time to get from n to base case

$$T(n) = \text{time to get from } n \text{ to } \frac{3}{4}n$$
  
+ time to get from  $\frac{3}{4}n \text{ to } \left(\frac{3}{4}\right)^2 n$   
+ time to get from  $\left(\frac{3}{4}\right)^2 n \text{ to } \left(\frac{3}{4}\right)^3 n$   
+ ...

Expected T(n) = expected time to get from n to  $\frac{3}{4}n$ + expected time to get from  $\frac{3}{4}n$  to  $\left(\frac{3}{4}\right)^2 n$ + expected time to get from  $\left(\frac{3}{4}\right)^2 n$  to  $\left(\frac{3}{4}\right)^3 n$ + ...

### Related

What is the expected number of coin flips necessary in order to see "heads"?

### Related

- What is the expected number of coin flips necessary in order to see "heads"?
- Answer: 2

### Implication

- Expected number of calls necessary to go from n to 3n/4 is two.
- First call does cn work, second does c × (3/4)n, third does c × (3/4)<sup>2</sup>n, ...

Expected T(n) = expected time to get from n to  $\frac{3}{4}n$ + expected time to get from  $\frac{3}{4}n$  to  $\left(\frac{3}{4}\right)^2 n$ + expected time to get from  $\left(\frac{3}{4}\right)^2 n$  to  $\left(\frac{3}{4}\right)^3 n$ + ...

#### **Total Expected Time**

$$2cn + 2\left(\frac{3}{4}\right)cn + 2\left(\frac{3}{4}\right)^{2}cn + \dots = 2cn \cdot \left(\sum_{p=0}^{\infty} \left(\frac{3}{4}\right)^{p}\right)$$

$$= \Theta(n)$$
.

### Quickselect

- Expected time complexity:  $\Theta(n)$ .
- Worst case:  $\Theta(n^2)$ , but **very unlikely**.

### Median

We can find the median in expected linear time with **quickselect**.

DSC 40B Theoretical Foundations II

Lecture 7 | Part 5

Quicksort

#### Last Time

- We saw mergesort.
- **Divide**: split list directly down the middle
- **Conquer**: sort each half
- **Combine**: merge sorted halves together

#### merge does all the work

- In mergesort, we are lazy when we divide.
- So we have to work to combine.

 $[4,1,3,2] \rightarrow [4,1], [3,2] \rightarrow [4,4], [2,3] \rightarrow [1,2,3,4]$ 

### What if?

- Suppose we divide so that everything in left is smaller than everything in right:
- After sorting, no need for merge.
- ▶ [5,1,3,8,6,2] → [1,3,2],[5,8,6]

### What if?

- Suppose we divide so that everything in left is smaller than everything in right:
- After sorting, no need for merge.
- ▶  $[5,1,3,8,6,2] \rightarrow [1,3,2], [5,8,6]$
- This is what partition does!

### Quicksort

```
def quicksort(arr, start, stop):
    """Sort arr[start:stop] in-place."""
    if stop - start > 1:
        pivot_ix = random.randrange(start, stop)
        pivot_ix = partition(arr, start, stop, pivot_ix)
        quicksort(arr, start, pivot_ix)
        quicksort(arr, pivot_ix+1, stop)
```

### **Time Complexity**

- Average case:  $\Theta(n \log n)$
- ▶ Worst case:  $\Theta(n^2)$ .
- Like with quickselect, worst case is very rare.

### **Mergesort vs Quicksort**

- Mergesort has better worst case complexity.
- But in practice, Quicksort is often faster.
- Takes less memory, too.

### **Memory Requirements**

- merges requires output array, Θ(n) additional space.
- partition works in-place, requires no additional space<sup>2</sup>
- Example: sorting 3 GB of data with 4 GB of RAM.

<sup>&</sup>lt;sup>2</sup>Call stack for quicksort requires  $\Theta(\log n)$  additional space.