
Lecture 7 | Part 1

The Median and Order Statistics

The Median▶ How fast can we find a median of 𝑛 numbers?

Algorithms▶ We have seen several ways of computing a median:▶ Alg. 1: Minimize absolute error, brute force.▶ Alg. 2: Use definition (half ≤, half ≥).▶ …

Exercise
Using what we know so far, what approach for find-
ing the median has the best worst-case time com-
plexity?

Best so far...▶ Sort the list with mergesort, return middle
element.▶ Time complexity: Θ(𝑛 log 𝑛).

Is sorting necessary?▶ Need to sort the whole list just to find middle?▶ Seems like more work than necessary.

Today▶ We’ll design an algorithm which runs in Θ(𝑛)
expected time.▶ Much more useful than just finding median...

Order Statistics▶ The median is an example of an order statistic.

Definition
Given 𝑛 numbers, the 𝑘th order statistic is the 𝑘th
smallest number in the collection.

Example

[99, 42, -77, -12, 101]▶ 1st order statistic:▶ 2nd order statistic:▶ 4th order statistic:

- 77

- 12

99

Exercise
Some special cases of order statistics go by differ-
ent names. Can you think of some?

Special Cases▶ Minimum: 1st order statistic.▶ Maximum: 𝑛th order statistic.▶ Median: ⌈𝑛/2⌉th order statistic1.▶ 𝑝th Percentile: ⌈ 𝑝100 ⋅ 𝑛⌉th order statistic.
1What if 𝑛 is even?

Goal▶ Fast algorithm for computing any order statistic.▶ Interestingly, some seem easier than others.▶ Our algorithm will find any order statistic in Θ(𝑛)
expected time.

Approach #1▶ We can modify selection_sort to find the 𝑘th
order statistic.▶ Loop invariant: after 𝑘th iteration, first 𝑘
elements are in final sorted order.

def selection_sort(arr):
”””In-place selection sort.”””
n = len(arr)
if n <= 1:

return
for barrier_ix in range(n-1):

find index of min in arr[start:]
min_ix = find_minimum(arr, start=barrier_ix)
#swap
arr[barrier_ix], arr[min_ix] = (

arr[min_ix], arr[barrier_ix]
)

def select_k(arr, k):
”””Find kth order statistic.”””
n = len(arr)
if n <= 1:

return
for barrier_ix in range(k):

find index of min in arr[start:]
min_ix = find_minimum(arr, start=barrier_ix)
#swap
arr[barrier_ix], arr[min_ix] = (

arr[min_ix], arr[barrier_ix]
)

return arr[k-1]

Exercise
What are the best case and worst case time com-
plexities of select_k?

Approach #1▶ 1st order statistic: Θ(𝑛).▶ 𝑛th order statistic: Θ(𝑛2).▶ Median: Θ(𝑛2).▶ 𝑘th order statistic: Θ(𝑘𝑛).

Exercise
Describe how to find any order statistic inΘ(𝑛 log 𝑛) time.

Approach #2▶ Sort with mergesort, return arr[k-1]▶ Θ(𝑛 log 𝑛) time. Could be better...

Lecture 7 | Part 2

Quickselect

The Goal▶ Given a collection of 𝑛 numbers and an order, 𝑘.▶ Find the 𝑘th smallest number in the collection.

A B C D E F G

22 101 42 19 14 84 20

A B C D E F G

Game Show▶ Goal: tell the host the largest number.▶ Caution: with every door opened, your money is
reduced.▶ Twist: After opening a door, the host tells you:▶ which doors are smaller.▶ which doors are larger.▶ they partition the doors into higher and lower by

moving them.

A B C D E F G

A B C D E F 20

D E 20 A B C F

after partitioning

D E 20 A B C 84

D E 20 A C 84 B

after partitioning

D E 20 A C 84 101

Main Idea
After partitioning, the just-opened door is in the
correct place in the sorted order (but the other
doors may not be).

But, every door to the left is smaller (≤), every door
to the right is larger (≥).

In general...▶ Let’s generalize strategy for 𝑘th order statistic.▶ Example: 𝑘 = 2.

A B C D E F G

A B C D E F 20

D E 20 A B C F

after partitioning

19 E 20 A B C F

E 19 20 A B C F

after partitioning

Strategy▶ Open arbitrary door (that hasn’t been ruled out).▶ Partition the doors around this number:▶ Move doors smaller than this to the left,▶ Larger than this to the right.▶ Let 𝑝 be our door’s new position, 𝑘 be the order
we want.▶ If 𝑝 = 𝑘, return this door.▶ If 𝑝 < 𝑘, rule out doors to left.▶ If 𝑝 > 𝑘, rule out doors to right.▶ Repeat.

In Code
import random
def quickselect(arr, k, start, stop):

”””Finds kth order statistic in numbers[start:stop])”””
pivot_ix = random.randrange(start, stop)
pivot_ix = partition(arr, start, stop, pivot_ix)
pivot_order = pivot_ix + 1
if pivot_order == k:

return arr[pivot_ix]
elif pivot_order < k:

return quickselect(arr, k, pivot_ix + 1, stop)
else:

return quickselect(arr, k, start, pivot_ix)

Example

arr = [77, 42, 11, 99, 0, 101] k = 3

1 , 0 , 42
,
It, e

Lecture 7 | Part 3

Partition

Paritioning▶ Given an array of 𝑛 numbers and the index of a
pivot 𝑝.▶ Rearrange elements so that:▶ Everything < 𝑝 is first.▶ Everything = 𝑝 is next.▶ Everything > 𝑝 is last.▶ Return index of first element ≥ 𝑝.

def partition(arr, start, stop, pivot_ix):
”””Partition arr[start:stop] around pivot.”””
left = []
pivot_count = 0
right = []
pivot = arr[pivot_ix]
for ix in range(start, stop):

if arr[ix] < pivot:
left.append(arr[ix])

elif arr[ix] == pivot:
pivot_count += 1

else:
right.append(arr[ix])

ix = start
for x in left:

arr[ix] = x
ix += 1

for i in range(pivot_count):
arr[ix] = pivot
ix += 1

for x in right:
arr[ix] = x
ix += 1

return start + len(left)

on [
: (

Partition▶ partition takes Θ(𝑛) time.▶ This is optimal.▶ But we can use memory more efficiently.

Motivation▶ Similar to selection sort, we’ll use two barriers:▶ “Middle” barrier:▶ Separates things < pivot from things ≥▶ Points to first thing in “right”▶ “End” barrier:▶ Separates processed from processed.▶ Points to first unprocessed thing.

Example

Simplification: start by moving pivot to end.

arr = [77, 42, 11, 99, 0, 101] pivot = 1
first

IIs 0
, 42 99 ,

10%
,
77

&

me ↑
e

↑

def in_place_partition(arr, start, stop, pivot_ix):
def swap(ix_1, ix_2):

arr[ix_1], arr[ix_2] = arr[ix_2], arr[ix_1]

pivot = arr[pivot_ix]
swap(pivot_ix, stop-1)
middle_barrier = start
for end_barrier in range(start, stop - 1):

if arr[end_barrier] < pivot:
swap(middle_barrier, end_barrier)
middle_barrier += 1

else:
do nothing

swap(middle_barrier, stop-1)
return middle_barrier

Efficiency▶ Also takes Θ(𝑛) time.▶ No auxiliary memory required.

Lecture 7 | Part 4

Time Complexity Analysis

Time Complexity▶ What is time complexity of quickselect?

import random
def quickselect(arr, k, start, stop):

”””Finds kth order statistic in numbers[start:stop])”””
pivot_ix = random.randrange(start, stop)
pivot_ix = partition(arr, start, stop, pivot_ix)
pivot_order = pivot_ix + 1
if pivot_order == k:

return arr[pivot_ix]
elif pivot_order < k:

return quickselect(arr, k, pivot_ix + 1, stop)
else:

⑦ (n)

Problem▶ We don’t know the size of the subproblem.▶ Is random, can be anywhere from 1 to 𝑛 − 1.▶ Difficult to write recurrence relation.

Good and Bad Pivots▶ Some pivots are better than others.▶ Good: splits array into roughly balanced halves.▶ Bad: splits array into wildly unbalanced pieces.

Exercise
Suppose we’re searching for the minimum. What
would be the worst possible pivot?

Worst Case▶ Suppose we’re searching for 𝑘 = 1 (minimum).▶ Worst pivot: the maximum.▶ Worst case: use max as pivot every time.▶ Subproblem size: 𝑛 − 1.

Worst Case▶ Every recursive call is on problem of size 𝑛 − 1.▶ 𝑇(𝑛) = 𝑇(𝑛 − 1) + Θ(𝑛).▶ Solution: Θ(𝑛2).▶ Intuitively, randomly choosing largest number as
pivot every time is very unlikely!1𝑛 × 1𝑛 − 1 × 1𝑛 − 2 × ⋯ × 13 × 12 = 1𝑛!

Equally Unlikely▶ Pivot falls exactly in the middle, every time.▶ Subproblems are of size 𝑛/2.▶ 𝑇(𝑛) = 𝑇(𝑛/2) + Θ(𝑛).▶ Solution: Θ(𝑛).

Typically▶ Pivot falls somewhere in the middle.▶ Sometimes good, sometimes bad.▶ But good pivots reduce problem size by so much
that they make up for bad pivots.

Analogy▶ You’re 100 miles away from home.▶ You have a button that, if you press it, teleports
you 1 mile closer to home.▶ How many times must you press it before you’re
1 mile away from home?

Analogy▶ You’re 100 miles away from home.▶ You have a button that, if you press it, teleports
you half the distance to home.▶ How many times must you press it before you’re
1 mile away from home?

Analogy▶ You’re 100 miles away from home.▶ You have a button that, if you press it, teleports
you half the distance to home with probability
1/2, does nothing with probability 1/2.▶ How many times must you press it before you’re
1 mile away from home?

Analysis▶ We’ll call a pivot good if it falls in [𝑛4 , 3𝑛4].▶ Probability: 1/2▶ Max problem size: 3𝑛/4.▶ We’ll call a pivot bad if it falls outside [𝑛4 , 3𝑛4].▶ Probability: 1/2▶ Max problem size: 𝑛 − 1.
land]go- d

f
↑ ↑

344 n- 1

/4

Observation

𝑇(𝑛) = time to get from 𝑛 to base case

Observation

𝑇(𝑛) = time to get from 𝑛 to 34𝑛+ time to get from 34𝑛 to (34)2 𝑛+ time to get from (34)2 𝑛 to (34)3 𝑛+ …

Observation

Expected 𝑇(𝑛) = expected time to get from 𝑛 to 34𝑛+ expected time to get from 34𝑛 to (34)2 𝑛+ expected time to get from (34)2 𝑛 to (34)3 𝑛+ …

Related▶ What is the expected number of coin flips
necessary in order to see “heads”?

▶ Answer: 2

Related▶ What is the expected number of coin flips
necessary in order to see “heads”?▶ Answer: 2

Implication▶ Expected number of calls necessary to go from 𝑛
to 3𝑛/4 is two.▶ First call does 𝑐𝑛 work, second does 𝑐 × (3/4)𝑛,
third does 𝑐 × (3/4)2𝑛, …

Observation

Expected 𝑇(𝑛) = expected time to get from 𝑛 to 34𝑛+ expected time to get from 34𝑛 to (34)2 𝑛+ expected time to get from (34)2 𝑛 to (34)3 𝑛+ …

Total Expected Time

2𝑐𝑛 + 2 (34) 𝑐𝑛 + 2 (34)2 𝑐𝑛 + … = 2𝑐𝑛 ⋅ ∞∑𝑝=0 (34)𝑝&
= f(n) .

Quickselect▶ Expected time complexity: Θ(𝑛).▶ Worst case: Θ(𝑛2), but very unlikely.

Median▶ We can find the median in expected linear time
with quickselect.

Lecture 7 | Part 5

Quicksort

Last Time▶ We saw mergesort.▶ Divide: split list directly down the middle▶ Conquer: sort each half▶ Combine: merge sorted halves together

merge does all the work▶ In mergesort, we are lazy when we divide.▶ So we have to work to combine.

[4,1,3,2]→ [4,1], [3,2]→ [4,3], [2,3]→ [1,2,3,4]*

What if?▶ Suppose we divide so that everything in left is
smaller than everything in right:▶ After sorting, no need for merge.▶ [5,1,3,8,6,2]→ [1,3,2], [5,8,6]

▶ This is what partition does!

What if?▶ Suppose we divide so that everything in left is
smaller than everything in right:▶ After sorting, no need for merge.▶ [5,1,3,8,6,2]→ [1,3,2], [5,8,6]▶ This is what partition does!

Quicksort
def quicksort(arr, start, stop):

”””Sort arr[start:stop] in-place.”””
if stop - start > 1:

pivot_ix = random.randrange(start, stop)
pivot_ix = partition(arr, start, stop, pivot_ix)
quicksort(arr, start, pivot_ix)
quicksort(arr, pivot_ix+1, stop)

Time Complexity▶ Average case: Θ(𝑛 log 𝑛)▶ Worst case: Θ(𝑛2).▶ Like with quickselect, worst case is very rare.

Mergesort vs Quicksort▶ Mergesort has better worst case complexity.▶ But in practice, Quicksort is often faster.▶ Takes less memory, too.

Memory Requirements▶ merges requires output array, Θ(𝑛) additional
space.▶ partition works in-place, requires no
additional space2▶ Example: sorting 3 GB of data with 4 GB of RAM.

2Call stack for quicksort requires Θ(log 𝑛) additional space.

