
Lecture 7 | Part 1

The Median and Order Statistics

The Median
▶ How fast can we find a median of 𝑛 numbers?

Algorithms
▶ We have seen several ways of computing a median:

▶ Alg. 1: Minimize absolute error, brute force.
▶ Alg. 2: Use definition (half ≤, half ≥).
▶ …

Exercise
Using what we know so far, what approach for find-
ing the median has the best worst-case time com-
plexity?

Best so far...
▶ Sort the list with mergesort, return middle
element.

▶ Time complexity: Θ(𝑛 log 𝑛).

Is sorting necessary?
▶ Need to sort the whole list just to find middle?

▶ Seems like more work than necessary.

Today
▶ We’ll design an algorithm which runs in Θ(𝑛)
expected time.

▶ Much more useful than just finding median...

Order Statistics
▶ The median is an example of an order statistic.

Definition

Given 𝑛 numbers, the 𝑘th order statistic is the 𝑘th
smallest number in the collection.

Example

[99, 42, -77, -12, 101]

▶ 1st order statistic:

▶ 2nd order statistic:

▶ 4th order statistic:

Exercise
Some special cases of order statistics go by differ-
ent names. Can you think of some?

Special Cases
▶ Minimum: 1st order statistic.

▶ Maximum: 𝑛th order statistic.

▶ Median: ⌈𝑛/2⌉th order statistic1.

▶ 𝑝th Percentile: ⌈ 𝑝
100 ⋅ 𝑛⌉th order statistic.

1What if 𝑛 is even?

Goal
▶ Fast algorithm for computing any order statistic.

▶ Interestingly, some seem easier than others.

▶ Our algorithm will find any order statistic in Θ(𝑛)
expected time.

Approach #1
▶ We can modify selection_sort to find the 𝑘th
order statistic.

▶ Loop invariant: after 𝑘th iteration, first 𝑘
elements are in final sorted order.

def selection_sort(arr):
”””In-place selection sort.”””
n = len(arr)
if n <= 1:

return
for barrier_ix in range(n-1):

find index of min in arr[start:]
min_ix = find_minimum(arr, start=barrier_ix)
#swap
arr[barrier_ix], arr[min_ix] = (

arr[min_ix], arr[barrier_ix]
)

def select_k(arr, k):
”””Find kth order statistic.”””
n = len(arr)
if n <= 1:

return
for barrier_ix in range(k):

find index of min in arr[start:]
min_ix = find_minimum(arr, start=barrier_ix)
#swap
arr[barrier_ix], arr[min_ix] = (

arr[min_ix], arr[barrier_ix]
)

return arr[k-1]

Exercise
What are the best case and worst case time com-
plexities of select_k?

Approach #1
▶ 1st order statistic: Θ(𝑛).

▶ 𝑛th order statistic: Θ(𝑛2).

▶ Median: Θ(𝑛2).

▶ 𝑘th order statistic: Θ(𝑘𝑛).

Exercise
Describe how to find any order statistic in
Θ(𝑛 log 𝑛) time.

Approach #2
▶ Sort with mergesort, return arr[k-1]

▶ Θ(𝑛 log 𝑛) time. Could be better...

Lecture 7 | Part 2

Quickselect

The Goal
▶ Given a collection of 𝑛 numbers and an order, 𝑘.

▶ Find the 𝑘th smallest number in the collection.

A B C D E F G

22 101 42 19 14 84 20

A B C D E F G

Game Show
▶ Goal: tell the host the largest number.

▶ Caution: with every door opened, your money is
reduced.

▶ Twist: After opening a door, the host tells you:
▶ which doors are smaller.
▶ which doors are larger.
▶ they partition the doors into higher and lower by
moving them.

A B C D E F G

A B C D E F 20

D E 20 A B C F

after partitioning

D E 20 A B C 84

D E 20 A C 84 B

after partitioning

D E 20 A C 84 101

Main Idea
After partitioning, the just-opened door is in the
correct place in the sorted order (but the other
doors may not be).

But, every door to the left is smaller (≤), every door
to the right is larger (≥).

In general...
▶ Let’s generalize strategy for 𝑘th order statistic.

▶ Example: 𝑘 = 2.

A B C D E F G

A B C D E F 20

D E 20 A B C F

after partitioning

19 E 20 A B C F

E 19 20 A B C F

after partitioning

Strategy
▶ Open arbitrary door (that hasn’t been ruled out).

▶ Partition the doors around this number:
▶ Move doors smaller than this to the left,
▶ Larger than this to the right.

▶ Let 𝑝 be our door’s new position, 𝑘 be the order
we want.
▶ If 𝑝 = 𝑘, return this door.
▶ If 𝑝 < 𝑘, rule out doors to left.
▶ If 𝑝 > 𝑘, rule out doors to right.

▶ Repeat.

In Code
import random
def quickselect(arr, k, start, stop):

”””Finds kth order statistic in numbers[start:stop])”””
pivot_ix = random.randrange(start, stop)
pivot_ix = partition(arr, start, stop, pivot_ix)
pivot_order = pivot_ix + 1
if pivot_order == k:

return arr[pivot_ix]
elif pivot_order < k:

return quickselect(arr, k, pivot_ix + 1, stop)
else:

return quickselect(arr, k, start, pivot_ix)

Example

arr = [77, 42, 11, 99, 0, 101] k = 3

Lecture 7 | Part 3

Partition

Paritioning
▶ Given an array of 𝑛 numbers and the index of a
pivot 𝑝.

▶ Rearrange elements so that:
▶ Everything < 𝑝 is first.
▶ Everything = 𝑝 is next.
▶ Everything > 𝑝 is last.

▶ Return index of first element ≥ 𝑝.

def partition(arr, start, stop, pivot_ix):
”””Partition arr[start:stop] around pivot.”””
left = []
pivot_count = 0
right = []
pivot = arr[pivot_ix]
for ix in range(start, stop):

if arr[ix] < pivot:
left.append(arr[ix])

elif arr[ix] == pivot:
pivot_count += 1

else:
right.append(arr[ix])

ix = start
for x in left:

arr[ix] = x
ix += 1

for i in range(pivot_count):
arr[ix] = pivot
ix += 1

for x in right:
arr[ix] = x
ix += 1

return start + len(left)

Partition
▶ partition takes Θ(𝑛) time.

▶ This is optimal.

▶ But we can use memory more efficiently.

Motivation
▶ Similar to selection sort, we’ll use two barriers:

▶ “Middle” barrier:
▶ Separates things < pivot from things ≥
▶ Points to first thing in “right”

▶ “End” barrier:
▶ Separates processed from processed.
▶ Points to first unprocessed thing.

Example

Simplification: start by moving pivot to end.

arr = [77, 42, 11, 99, 0, 101] pivot = 1

def in_place_partition(arr, start, stop, pivot_ix):
def swap(ix_1, ix_2):

arr[ix_1], arr[ix_2] = arr[ix_2], arr[ix_1]

pivot = arr[pivot_ix]
swap(pivot_ix, stop-1)
middle_barrier = start
for end_barrier in range(start, stop - 1):

if arr[end_barrier] < pivot:
swap(middle_barrier, end_barrier)
middle_barrier += 1

else:
do nothing

swap(middle_barrier, stop-1)
return middle_barrier

Efficiency
▶ Also takes Θ(𝑛) time.

▶ No auxiliary memory required.

Lecture 7 | Part 4

Time Complexity Analysis

Time Complexity
▶ What is time complexity of quickselect?

import random
def quickselect(arr, k, start, stop):

”””Finds kth order statistic in numbers[start:stop])”””
pivot_ix = random.randrange(start, stop)
pivot_ix = partition(arr, start, stop, pivot_ix)
pivot_order = pivot_ix + 1
if pivot_order == k:

return arr[pivot_ix]
elif pivot_order < k:

return quickselect(arr, k, pivot_ix + 1, stop)
else:

Problem
▶ We don’t know the size of the subproblem.

▶ Is random, can be anywhere from 1 to 𝑛 − 1.

▶ Difficult to write recurrence relation.

Good and Bad Pivots
▶ Some pivots are better than others.

▶ Good: splits array into roughly balanced halves.
▶ Bad: splits array into wildly unbalanced pieces.

Exercise
Suppose we’re searching for the minimum. What
would be the worst possible pivot?

Worst Case
▶ Suppose we’re searching for 𝑘 = 1 (minimum).

▶ Worst pivot: the maximum.

▶ Worst case: use max as pivot every time.

▶ Subproblem size: 𝑛 − 1.

Worst Case
▶ Every recursive call is on problem of size 𝑛 − 1.

▶ 𝑇(𝑛) = 𝑇(𝑛 − 1) + Θ(𝑛).
▶ Solution: Θ(𝑛2).

▶ Intuitively, randomly choosing largest number as
pivot every time is very unlikely!

1
𝑛 ×

1
𝑛 − 1 ×

1
𝑛 − 2 × ⋯ ×

1
3 ×

1
2 =

1
𝑛!

Equally Unlikely
▶ Pivot falls exactly in the middle, every time.

▶ Subproblems are of size 𝑛/2.

▶ 𝑇(𝑛) = 𝑇(𝑛/2) + Θ(𝑛).
▶ Solution: Θ(𝑛).

Typically
▶ Pivot falls somewhere in the middle.

▶ Sometimes good, sometimes bad.

▶ But good pivots reduce problem size by so much
that they make up for bad pivots.

Analogy
▶ You’re 100 miles away from home.

▶ You have a button that, if you press it, teleports
you 1 mile closer to home.

▶ How many times must you press it before you’re
1 mile away from home?

Analogy
▶ You’re 100 miles away from home.

▶ You have a button that, if you press it, teleports
you half the distance to home.

▶ How many times must you press it before you’re
1 mile away from home?

Analogy
▶ You’re 100 miles away from home.

▶ You have a button that, if you press it, teleports
you half the distance to home with probability
1/2, does nothing with probability 1/2.

▶ How many times must you press it before you’re
1 mile away from home?

Analysis

▶ We’ll call a pivot good if it falls in [𝑛4 ,
3𝑛
4].▶ Probability: 1/2

▶ Max problem size: 3𝑛/4.

▶ We’ll call a pivot bad if it falls outside [𝑛4 ,
3𝑛
4].▶ Probability: 1/2

▶ Max problem size: 𝑛 − 1.

Observation

𝑇(𝑛) = time to get from 𝑛 to base case

Observation

𝑇(𝑛) = time to get from 𝑛 to 34𝑛

+ time to get from 3
4𝑛 to (

3
4)

2
𝑛

+ time to get from (34)
2
𝑛 to (34)

3
𝑛

+ …

Observation

Expected 𝑇(𝑛) = expected time to get from 𝑛 to 34𝑛

+ expected time to get from 3
4𝑛 to (

3
4)

2
𝑛

+ expected time to get from (34)
2
𝑛 to (34)

3
𝑛

+ …

Related
▶ What is the expected number of coin flips
necessary in order to see “heads”?

▶ Answer: 2

Related
▶ What is the expected number of coin flips
necessary in order to see “heads”?

▶ Answer: 2

Implication
▶ Expected number of calls necessary to go from 𝑛
to 3𝑛/4 is two.

▶ First call does 𝑐𝑛 work, second does 𝑐 × (3/4)𝑛,
third does 𝑐 × (3/4)2𝑛, …

Observation

Expected 𝑇(𝑛) = expected time to get from 𝑛 to 34𝑛

+ expected time to get from 3
4𝑛 to (

3
4)

2
𝑛

+ expected time to get from (34)
2
𝑛 to (34)

3
𝑛

+ …

Total Expected Time

2𝑐𝑛 + 2 (34) 𝑐𝑛 + 2 (
3
4)

2
𝑐𝑛 + … = 2𝑐𝑛 ⋅

∞
∑
𝑝=0

(34)
𝑝

Quickselect
▶ Expected time complexity: Θ(𝑛).

▶ Worst case: Θ(𝑛2), but very unlikely.

Median
▶ We can find the median in expected linear time
with quickselect.

Lecture 7 | Part 5

Quicksort

Last Time
▶ We saw mergesort.

▶ Divide: split list directly down the middle

▶ Conquer: sort each half

▶ Combine: merge sorted halves together

merge does all the work
▶ In mergesort, we are lazy when we divide.

▶ So we have to work to combine.

[4,1,3,2]→ [4,1], [3,2]→ [4,3], [2,3]→ [1,2,3,4]

What if?
▶ Suppose we divide so that everything in left is
smaller than everything in right:

▶ After sorting, no need for merge.

▶ [5,1,3,8,6,2]→ [1,3,2], [5,8,6]

▶ This is what partition does!

What if?
▶ Suppose we divide so that everything in left is
smaller than everything in right:

▶ After sorting, no need for merge.

▶ [5,1,3,8,6,2]→ [1,3,2], [5,8,6]

▶ This is what partition does!

Quicksort
def quicksort(arr, start, stop):

”””Sort arr[start:stop] in-place.”””
if stop - start > 1:

pivot_ix = random.randrange(start, stop)
pivot_ix = partition(arr, start, stop, pivot_ix)
quicksort(arr, start, pivot_ix)
quicksort(arr, pivot_ix+1, stop)

Time Complexity
▶ Average case: Θ(𝑛 log 𝑛)

▶ Worst case: Θ(𝑛2).

▶ Like with quickselect, worst case is very rare.

Mergesort vs Quicksort
▶ Mergesort has better worst case complexity.

▶ But in practice, Quicksort is often faster.

▶ Takes less memory, too.

Memory Requirements
▶ merges requires output array, Θ(𝑛) additional
space.

▶ partition works in-place, requires no
additional space2

▶ Example: sorting 3 GB of data with 4 GB of RAM.

2Call stack for quicksort requires Θ(log 𝑛) additional space.

