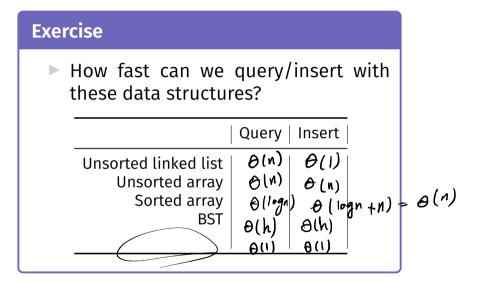
DSC 40B Theoretical Foundations II

Lecture 9 | Part 1

Warmup



DSC 40B Theoretical Foundations II

Lecture 9 | Part 2

Direct Address Tables

Counting Frequencies

How many times does each age appear?

PID	Name	Age
A1843	Wan	24
A8293	Deveron	22
A9821	Vinod	41
A8172	Aleix	17
A2882	Kayden	4
A1829	Raghu	51
A9772	Cui	48
:	:	:

Exercise

What data structure would you use to store the age counts?

Direct Address Tables

Idea: keep an array arr of length, say, 125.

Initialize to zero.

If we see age x, increment arr[x] by one.

Building the Table

loading the table table = np.zeros(125) for age in ages: $\theta_{(n)} \leftarrow table[age] += 1$

Time complexity if there are n people? Ø (n)

Query

query: how many people are 55?
print(table[55])

Time complexity if there are *n* people? $\Theta(l)$

Counting Names

How many times does each name appear?

PID	Name	Age
A1843	Wan	24
A8293	Deveron	22
A9821	Vinod	41
A8172	Aleix	17
A2882	Kayden	4
A1829	Raghu	51
A9772	Cui	48
:	:	÷

Downsides

- DATs are fast.
- What are the downsides of DATs?
- Could we use a DAT to store:
 - zip codes?
 - phone numbers?
 - credit card numbers?
 - names?

Downsides

- Things being stored must be integers, or convertible to integers
 - why? valid array indices
- Must come from a small range of possibilities
 why? memory usage. example: phone numbers

Hash Tables

Insight: anything can be "converted" to an integer through hashing.

- But not uniquely!
- Hash tables have many of the same advantages as DATs, but work more generally.

DSC 40B Theoretical Foundations II

Lecture 9 | Part 3

Hashing

Hashing

One of the most important ideas in CS.

Tons of uses:

- Verifying message integrity.
- Fast queries on a large data set.
- Identify if file has changed in version control.

Hash Function

- A hash function takes a (large) object and returns a (smaller) "fingerprint" of that object.
- Usually the fingerprint is a number, guaranteed to be in some range.

 hash

 function

How?

Looking at certain bits, combining them in ways that *look* random (but aren't!)

Hash Function Properties

- Hashing same thing twice returns the same hash.
- Unlikely that different things have same fingerprint.
 - But not impossible!

Collisions

- Hash functions map objects to numbers in a defined range.
 - Example: given image, return number in [0, 1, 2, ..., 1024]
- There will be two images with the same hash.
 - Pigeonhole principle: if there are n pigeons, < n holes, there will a hole with ≥ 2 pigeons.
- Collision: two objects have the same hash

"Good" Hash Functions

A good hash function tries to minimize collisions.

Hashing in Python

The hash function computes a hash.

>>> hash("This is a test")
 -670458579957477203
 >>> hash("This is a test")
 -670458579957477203
 >>> hash("This is a test!")
 1860306055874153109

MD5

- MD5 is a cryptographic hash function.
 Hard to "reverse engineer" input from hash.
- Returns a really large number in hex.

a741d8524a853cf83ca21eabf8cea190

Used to "fingerprint" whole files.

Example

> echo "My name is Akbar" | md5 a741d8524a853cf83ca21eabf8cea190 > echo "My name is Akbar" | md5 a741d8524a853cf83ca21eabf8cea190 > echo "My name is Akbar!" | md5 f11eed2391bbd0a5a2355397co89fafd

Example

> md5 slides.pdf
e3fd4370fda30ceb978390004e07b9df

Why?

► I release a piece of software.

I host it on Google Drive.

Someone (Google, US Gov., etc.) decides to insert extra code into software to spy on users.

You have no way of knowing.

Why?

I release a piece of software & publish the hash.

I host it on Google Drive.

- Someone inserts extra code.
- You download the software and hash it. If hash is different, you know the file has been changed!

Another Use: De-duplication

- Building a massive training set of images.
- Given a new image, is it already in my collection?
- Don't need to compare images pixel-by-pixel!
- Instead, compare hashes.

Hashing for Data Scientists

- Don't need to know much about how the hash function works.
- But should know how they are used.

DSC 40B Theoretical Foundations II

Lecture 9 | Part 4

Hash Tables

Membership Queries

Given: a collection of *n* numbers and a target *t*.

Find: determine if *t* is in the collection.

Goal

- DATs are fast, but won't work for things that aren't numbers in a small range.
- Idea: hash objects to numbers in a small range, use a DAT.
- But must deal with collisions.

Hash Tables

Pick a table size m.

▶ Usually $m \approx$ number of things you'll be storing.

- Create hash function to turn input into a number in {0, 1, ..., m - 1}.
- Create DAT with *m* bins.

Example

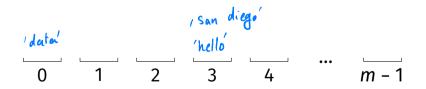
hash('hello') == 3
hash('data') == 0
hash('science') == 4

Collisions

- The universe is the set of all possible inputs.
- ▶ This is usually much larger than *m* (even infinite).
- Not possible to assign each input to a unique bin.
- If hash(a) == hash(b), there is a collision.

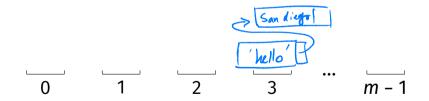
Example

hash('hello') == 3
hash('data') == 0
hash('san diego') == 3



Chaining

Collisions stored in same bin, in linked list. Query: Hash to find bin, then linear search.



The Idea

- A good hash function will utilize all bins evenly.
 Looks like uniform random distribution.
- ▶ If $m \approx n$, then only a few elements in each bin.
- As we add more elements, we need to add bins.

Average Case

n elements in table.

▶ *m* bins.

Assume elements placed randomly in bins¹.

Expected bin size: n/m

¹Of course, they are placed deterministically.

Average Case

n elements in table.

▶ *m* bins.

Assume elements placed randomly in bins¹.

Expected bin size: n/m

¹Of course, they are placed deterministically.

- Query:
 - 0(1) ▶ Time to find correct bin:
 - Expected number of elements in the bin: n/m Time to perform linear search: $\Theta(n/m)$
 - ► Total:

- Query:
 - Time to find correct bin: Θ(1)
 - Expected number of elements in the bin:
 - Time to perform linear search:
 - Total:

- Query:
 - Time to find correct bin: Θ(1)
 - Expected number of elements in the bin: n/m
 - Time to perform linear search:
 - Total:

- Query:
 - Time to find correct bin: Θ(1)
 - Expected number of elements in the bin: n/m
 - Time to perform linear search: $\Theta(n/m)$
 - Total:

$$\Theta(1+n/m)$$

- Query:
 - Time to find correct bin: Θ(1)
 - Expected number of elements in the bin: n/m
 - Time to perform linear search: $\Theta(n/m)$
 - Total: Θ(1 + n/m)

- Query:
 - Time to find correct bin: Θ(1)
 - Expected number of elements in the bin: n/m
 - Time to perform linear search: $\Theta(n/m)$
 - Total: Θ(1 + n/m)
 - We usually guarantee $m = \Theta(n)$

- Query:
 - Time to find correct bin: Θ(1)
 - Expected number of elements in the bin: n/m
 - Time to perform linear search: $\Theta(n/m)$
 - Total: $\Theta(1 + n/m)$
 - We usually guarantee $m = \Theta(n)$
 - Expected time: Θ(1).

Worst Case

- Everything hashed to same bin.
 Really unlikely!
- ► Query:
 - \blacktriangleright $\Theta(1)$ to find bin
 - $\Theta(n)$ for linear search.
 - ► Total: Θ(*n*).

Exercise

What is the worst case time complexity of inserting an element into a hash table that uses chaining with linked lists?

0(1)

Growing the Hash Table

- Insertions take Θ(1) unless the hash table needs to grow.
- We need to ensure that m ≤ c · n.
 Otherwise, too many collisions.
- If we add a bunch of elements, we'll need to increase m.
- Increasing m means allocating a new array,
 Θ(m) = Θ(n) time.

Main Idea

Hash tables support constant (expected) time insertion and membership queries.

Dictionaries

- Hash tables can also be used to store (key, value) pairs.
- Often called dictionaries or associative arrays.

Hashing in Python

- dict and set implement hash tables.
- Querying is done using in:

```
>>> # make a set
>>> L = {3, 6, -2, 1, 7, 12}
>>> 4 in L # Theta(1)
False
>>> 7 in L # Theta(1)
True
```

DSC 40B Theoretical Foundations II

Lecture 9 | Part 5

Fast Algorithms with Hash Tables

Faster Algorithms

- Hashing is a super common trick.
- The "best" solution to interview problems often involves hashing.

Example 1: The Movie Problem

- You're on a flight that will last D minutes.
- You want to pick two movies to watch.
- Find two whose durations sum to **exactly** *D*.

Recall: Previous Solutions

- **•** Brute force: $\Theta(n^2)$.
- Sort, use sorted structure: $\Theta(n \log n) + \Theta(n)$.
- Theoretical lower bound: $\Omega(n)$?
- Can we speed this up with hash tables?

Idea

To use hash tables, we want to frame problem as a membership query.

Example

- Suppose flight is 360 minutes long.
- Suppose first movie is fixed: 120 minutes.
- Is there a movie lasting (360 120) = 240 minutes?

```
def optimize entertainment hash(times, D):
 for i, time in enumerate(times):
Â(I)
```

Example 2: Anagrams

Definition

Two strings w_1 and w_2 are **anagrams** if the letters of w_1 one can be permuted to make w_2 .

Examples

- abcd / dbca
- ▶ listen/silent
- sandiego / doginsea

Problem

Given a collection of *n* strings, determine if any two of them are anagrams.

Exercise

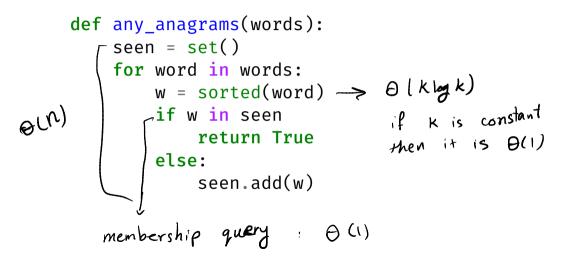
Design an efficient algorithm for solving this problem. What is its time complexity?

Solution

We need to turn this into a membership query.

Trick: two strings are anagrams iff

sorted(w_1) == sorted(w_2)



Hashing **Downsides**

Problem must involve membership query.

Example: The Movie Problem

- You're on a flight that will last D minutes.
- You want to pick two movies to watch.
- Find two whose added durations is **closest** to *D*.

Hashing **Downsides**

No locality: similar items map to different bins.

There is no way to quickly query entry closest to given input.

Example: Number of Elements

- Given a collection of *n* numbers and two endpoints, *a* and *b*, determine how many of the numbers are contained in [*a*, *b*].
- Not a membership query.
- Idea: sort and use modified binary search.

DSC 40B Theoretical Foundations II

Lecture 9 | Part 6

Hash Table Drawbacks

Hashing **Downsides**

- No locality: similar items map to different bins.
- But we often want similar items at the same time.
- Results in many cache misses, slow.

Hashing **Downsides**

Memory overhead.

Hash Tables vs. BSTs

- Hash Table: Θ(1) insertion, query (expected time).
- BST: Θ(log *n*) insertion, query (if balanced).
- Why ever use a BST?

Hash Tables vs. BSTs

- Hash tables keep items in arbitrary order.
- Example: how many elements are in the interval [3, 23]?
- Example: what is the min/max/median?
- BSTs win when order is important.