
Lecture 9 | Part 1

Warmup

Exercise▶ How fast can we query/insert with
these data structures?

Query Insert

Unsorted linked list
Unsorted array
Sorted array

BST

& (n) O(1)
O(n) O(n)
Ellogn) - (logn +n) = 0 (n)

-(h) A (h)

& A(l) #(1)

Lecture 9 | Part 2

Direct Address Tables

Counting Frequencies▶ How many times does each age appear?

PID Name Age

A1843 Wan 24
A8293 Deveron 22
A9821 Vinod 41
A8172 Aleix 17
A2882 Kayden 4
A1829 Raghu 51
A9772 Cui 48⋮ ⋮ ⋮

Exercise
What data structure would you use to store the age
counts?

Direct Address Tables▶ Idea: keep an array arr of length, say, 125.▶ Initialize to zero.▶ If we see age 𝑥, increment arr[x] by one.

Building the Table
loading the table
table = np.zeros(125)

for age in ages:
table[age] += 1

▶ Time complexity if there are 𝑛 people?
-&

f(n) -

①(n)

Query
query: how many people are 55?
print(table[55])▶ Time complexity if there are 𝑛 people? -(1)

Counting Names▶ How many times does each name appear?
PID Name Age

A1843 Wan 24
A8293 Deveron 22
A9821 Vinod 41
A8172 Aleix 17
A2882 Kayden 4
A1829 Raghu 51
A9772 Cui 48⋮ ⋮ ⋮

Downsides▶ DATs are fast.▶ What are the downsides of DATs?▶ Could we use a DAT to store:▶ zip codes?▶ phone numbers?▶ credit card numbers?▶ names?

Downsides▶ Things being stored must be integers, or
convertible to integers▶ why? valid array indices▶ Must come from a small range of possibilities▶ why? memory usage. example: phone numbers

Hash Tables▶ Insight: anything can be “converted” to an
integer through hashing.▶ But not uniquely!▶ Hash tables have many of the same advantages
as DATs, but work more generally.

Lecture 9 | Part 3

Hashing

Hashing▶ One of the most important ideas in CS.▶ Tons of uses:▶ Verifying message integrity.▶ Fast queries on a large data set.▶ Identify if file has changed in version control.

Hash Function▶ A hash function takes a (large) object and
returns a (smaller) “fingerprint” of that object.▶ Usually the fingerprint is a number, guaranteed
to be in some range.

of
function
Ta ge

How?▶ Looking at certain bits, combining them in ways
that look random (but aren’t!)

Hash Function Properties▶ Hashing same thing twice returns the same hash.▶ Unlikely that different things have same
fingerprint.▶ But not impossible!

Collisions▶ Hash functions map objects to numbers in a
defined range.▶ Example: given image, return number in[0, 1, 2, … , 1024]▶ There will be two images with the same hash.▶ Pigeonhole principle: if there are 𝑛 pigeons, < 𝑛

holes, there will a hole with ≥ 2 pigeons.▶ Collision: two objects have the same hash

“Good” Hash Functions▶ A good hash function tries to minimize collisions.

Hashing in Python▶ The hash function computes a hash.

>>> hash(”This is a test”)
-670458579957477203
>>> hash(”This is a test”)
-670458579957477203
>>> hash(”This is a test!”)
1860306055874153109

->

MD5▶ MD5 is a cryptographic hash function.▶ Hard to “reverse engineer” input from hash.▶ Returns a really large number in hex.

a741d8524a853cf83ca21eabf8cea190▶ Used to “fingerprint” whole files.

Example
> echo ”My name is Akbar” | md5
a741d8524a853cf83ca21eabf8cea190
> echo ”My name is Akbar” | md5
a741d8524a853cf83ca21eabf8cea190
> echo ”My name is Akbar!” | md5
f11eed2391bbd0a5a2355397c089fafd

Example
> md5 slides.pdf
e3fd4370fda30ceb978390004e07b9df

Why?▶ I release a piece of software.▶ I host it on Google Drive.▶ Someone (Google, US Gov., etc.) decides to insert
extra code into software to spy on users.▶ You have no way of knowing.

Why?▶ I release a piece of software & publish the hash.▶ I host it on Google Drive.▶ Someone inserts extra code.▶ You download the software and hash it. If hash is
different, you know the file has been changed!

Another Use: De-duplication▶ Building a massive training set of images.▶ Given a new image, is it already in my collection?▶ Don’t need to compare images pixel-by-pixel!▶ Instead, compare hashes.

Hashing for Data Scientists▶ Don’t need to know much about how the hash
function works.▶ But should know how they are used.

Lecture 9 | Part 4

Hash Tables

Membership Queries▶ Given: a collection of 𝑛 numbers and a target 𝑡.▶ Find: determine if 𝑡 is in the collection.

Goal▶ DATs are fast, but won’t work for things that
aren’t numbers in a small range.▶ Idea: hash objects to numbers in a small range,
use a DAT.▶ But must deal with collisions.

Hash Tables▶ Pick a table size 𝑚.▶ Usually 𝑚 ≈ number of things you’ll be storing.▶ Create hash function to turn input into a number
in {0, 1, … ,𝑚 − 1}.▶ Create DAT with 𝑚 bins.

Example
hash('hello') == 3
hash('data') == 0
hash('science') == 4

0 1 2 3 4 𝑚 − 1…I

"data 'hello' science

Collisions▶ The universe is the set of all possible inputs.▶ This is usually much larger than 𝑚 (even infinite).▶ Not possible to assign each input to a unique bin.▶ If hash(a) == hash(b), there is a collision.

Example
hash('hello') == 3
hash('data') == 0
hash('san diego') == 3

0 1 2 3 4 𝑚 − 1…, san diego
datal hello'

Chaining▶ Collisions stored in same bin, in linked list.▶ Query: Hash to find bin, then linear search.

0 1 2 3 𝑚 − 1…nig

The Idea▶ A good hash function will utilize all bins evenly.▶ Looks like uniform random distribution.▶ If 𝑚 ≈ 𝑛, then only a few elements in each bin.▶ As we add more elements, we need to add bins.

Average Case▶ 𝑛 elements in table.▶ 𝑚 bins.▶ Assume elements placed randomly in bins1.▶ Expected bin size:

1Of course, they are placed deterministically.

u/m

Average Case▶ 𝑛 elements in table.▶ 𝑚 bins.▶ Assume elements placed randomly in bins1.▶ Expected bin size: 𝑛/𝑚
1Of course, they are placed deterministically.

Analysis▶ Query:▶ Time to find correct bin:▶ Expected number of elements in the bin:▶ Time to perform linear search:▶ Total:

▶ We usually guarantee 𝑚 = Θ(𝑛)▶ Expected time: Θ(1).

O(I)
n/m

f(/m)

Analysis▶ Query:▶ Time to find correct bin: Θ(1)▶ Expected number of elements in the bin:▶ Time to perform linear search:▶ Total:

▶ We usually guarantee 𝑚 = Θ(𝑛)▶ Expected time: Θ(1).

Analysis▶ Query:▶ Time to find correct bin: Θ(1)▶ Expected number of elements in the bin: 𝑛/𝑚▶ Time to perform linear search:▶ Total:

▶ We usually guarantee 𝑚 = Θ(𝑛)▶ Expected time: Θ(1).

Analysis▶ Query:▶ Time to find correct bin: Θ(1)▶ Expected number of elements in the bin: 𝑛/𝑚▶ Time to perform linear search: Θ(𝑛/𝑚)▶ Total:

▶ We usually guarantee 𝑚 = Θ(𝑛)▶ Expected time: Θ(1).

-(1 + 4/m)

Analysis▶ Query:▶ Time to find correct bin: Θ(1)▶ Expected number of elements in the bin: 𝑛/𝑚▶ Time to perform linear search: Θ(𝑛/𝑚)▶ Total: Θ(1 + 𝑛/𝑚)

▶ We usually guarantee 𝑚 = Θ(𝑛)▶ Expected time: Θ(1).

Analysis▶ Query:▶ Time to find correct bin: Θ(1)▶ Expected number of elements in the bin: 𝑛/𝑚▶ Time to perform linear search: Θ(𝑛/𝑚)▶ Total: Θ(1 + 𝑛/𝑚)▶ We usually guarantee 𝑚 = Θ(𝑛)

▶ Expected time: Θ(1).

Analysis▶ Query:▶ Time to find correct bin: Θ(1)▶ Expected number of elements in the bin: 𝑛/𝑚▶ Time to perform linear search: Θ(𝑛/𝑚)▶ Total: Θ(1 + 𝑛/𝑚)▶ We usually guarantee 𝑚 = Θ(𝑛)▶ Expected time: Θ(1).

Worst Case▶ Everything hashed to same bin.▶ Really unlikely!▶ Query:▶ Θ(1) to find bin▶ Θ(𝑛) for linear search.▶ Total: Θ(𝑛).

Exercise
What is the worst case time complexity of inserting
an element into a hash table that uses chaining
with linked lists?

(1)

Growing the Hash Table▶ Insertions take Θ(1) unless the hash table needs
to grow.▶ We need to ensure that 𝑚 ≤ 𝑐 ⋅ 𝑛.▶ Otherwise, too many collisions.▶ If we add a bunch of elements, we’ll need to
increase 𝑚.▶ Increasing 𝑚 means allocating a new array,Θ(𝑚) = Θ(𝑛) time.

Main Idea
Hash tables support constant (expected) time in-
sertion and membership queries.

Dictionaries▶ Hash tables can also be used to store (key, value)
pairs.▶ Often called dictionaries or associative arrays.

Hashing in Python▶ dict and set implement hash tables.▶ Querying is done using in:

>>> # make a set
>>> L = {3, 6, -2, 1, 7, 12}
>>> 4 in L # Theta(1)
False
>>> 7 in L # Theta(1)
True

Lecture 9 | Part 5

Fast Algorithms with Hash Tables

Faster Algorithms▶ Hashing is a super common trick.▶ The “best” solution to interview problems often
involves hashing.

Example 1: The Movie Problem▶ You’re on a flight that will last 𝐷 minutes.▶ You want to pick two movies to watch.▶ Find two whose durations sum to exactly 𝐷.

Recall: Previous Solutions▶ Brute force: Θ(𝑛2).▶ Sort, use sorted structure: Θ(𝑛 log 𝑛) + Θ(𝑛).▶ Theoretical lower bound: Ω(𝑛)?▶ Can we speed this up with hash tables?

Idea▶ To use hash tables, we want to frame problem as
a membership query.

Example▶ Suppose flight is 360 minutes long.▶ Suppose first movie is fixed: 120 minutes.▶ Is there a movie lasting (360 - 120) = 140 minutes?&

def optimize_entertainment_hash(times, D):
hash_table = dict()
for i, time in enumerate(times):

hash_table[time] = i

for i, time in enumerate(times):
target = D - time
if target in hash_table:

return i, hash_table[target]

an [

Eno
: 0 s

Jains
90 : I

!

Example 2: Anagrams

Definition
Two strings w_1 and w_2 are anagrams if the letters
of w_1 one can be permuted to make w_2.

Examples▶ abcd / dbca▶ listen / silent▶ sandiego / doginsea

Problem▶ Given a collection of 𝑛 strings, determine if any
two of them are anagrams.

Exercise
Design an efficient algorithm for solving this prob-
lem. What is its time complexity?

Solution▶ We need to turn this into a membership query.▶ Trick: two strings are anagrams iff

sorted(w_1) == sorted(w_2)

def any_anagrams(words):
seen = set()
for word in words:

w = sorted(word)
if w in seen

return True
else:

seen.add(w)

-> -(kbgk)
E(M) if K is constantI! then it is (1)

membership query : & ()

Hashing Downsides▶ Problem must involve membership query.

Example: The Movie Problem▶ You’re on a flight that will last 𝐷 minutes.▶ You want to pick two movies to watch.▶ Find two whose added durations is closest to 𝐷.

Hashing Downsides▶ No locality: similar items map to different bins.▶ There is no way to quickly query entry closest to
given input.

Example: Number of Elements▶ Given a collection of 𝑛 numbers and two
endpoints, 𝑎 and 𝑏, determine how many of the
numbers are contained in [𝑎, 𝑏].▶ Not a membership query.▶ Idea: sort and use modified binary search.

Lecture 9 | Part 6

Hash Table Drawbacks

Hashing Downsides▶ No locality: similar items map to different bins.▶ But we often want similar items at the same time.▶ Results in many cache misses, slow.

Hashing Downsides▶ Memory overhead.

Hash Tables vs. BSTs▶ Hash Table: Θ(1) insertion, query (expected
time).▶ BST: Θ(log 𝑛) insertion, query (if balanced).▶ Why ever use a BST?

Hash Tables vs. BSTs▶ Hash tables keep items in arbitrary order.▶ Example: how many elements are in the interval[3, 23]?▶ Example: what is the min/max/median?▶ BSTs win when order is important.

