DSC 40B Theoretical Foundations II

Lecture 10 | Part 1

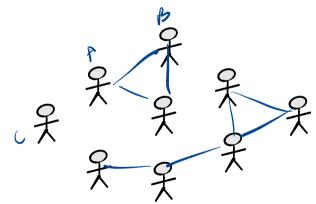
Graphs

Data Types

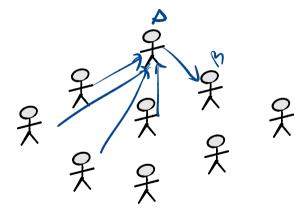
- Feature vectors
 - We care about attributes of individuals.

- Graphs
 - We care about relationships between individuals.

Example: Facebook



Example: Twitter



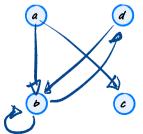
Definition

A directed graph (or digraph) G is a pair (V, E) where V is a finite set of nodes (or vertices) and E is a set of ordered pairs (the edges).

Example:

$$V = \{a, b, c, d\}$$

 $E = \{(a, c), (a, b), (d, b), (b, d), (b, b)\}$



Directed Graphs (More Formally)

E is a subset of the Cartesian product, $V \times V$.

Example:
$$\{a, b, c\} \times \{1, 2\} = \langle (a, b, c), (a, 2), (b, b), (b, 2), (C_1), (C_12) \rangle$$

$$V \times V = \left((a_1 a_1 + (a_1 b_1) - (b_1 a_1) \right)$$
Consequences

Because the edge set of a directed graph is allowed to be any subset of $V \times V$:

- ✓ the edges have directions.
 - e.g., (a, b) is "from a to b"
- can have "opposite" edges.
 - e.g., (*a*, *b*) and (*b*, *a*).
- can have "self-loops"
 - e.g., (a, a)

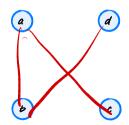
Definition

An undirected graph G is a pair (V, E) where V is a finite set of nodes (or vertices) and E is a set of unordered, distinct pairs (the edges).

Example:

$$V = \{a, b, c, d\}$$

 $E = \{\{a, c\}, \{a, b\}, \{d, b\}\}$



Undirected Graphs (More Formally)

An edge in an undirected graph is a set $\{u, v\}$ where $u \neq v$. This has consequences:

- the edges have no direction.
 - e.g., {a, b} is **not** "from" a "to" b.
- cannot have "opposite" edges.
 - \triangleright e.g., $\{a, b\}$ and $\{b, a\}$ are the same.
- cannot have "self-loops"
 - e.g., {a, a} is not a valid edge

Notational Note

Although edges in undirected graphs are sets, we typically write them as pairs: (u, v) instead of $\{u, v\}$.

Summary

- Edges have direction:
 - Directed: yes
 - Undirected: no
- \triangleright Self-loops, (u, u)?
 - ► Directèd: **yes**
 - Undirected: no
- \triangleright Opposite edges, (u, v) and (v, u)?
 - Directed: yes
 - Undirected: no (they are the same edge)

Note

Neither directed nor undirected graphs can have duplicate edges¹

¹There are other definitions which allow duplicate edges.

Note

#

Graphs don't need to be "connected"²

& Cr2(1/4)

²There are other definitions which allow duplicate edges.

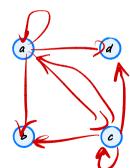
Exercise

What is the greatest number edges possible in a **directed** graph?

Counting Edges

What is the greatest number edges possible in a **directed** graph?

9+4+4+4 = 6

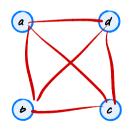


Exercise

What is the greatest number edges possible in an **undirected** graph?

Counting Edges

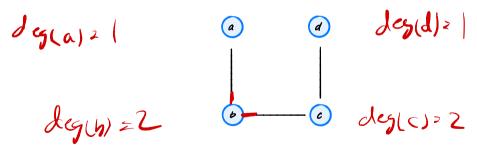
What is the greatest number edges possible in an **undirected** graph?



$$\frac{2}{N(N-1)}$$

Degree

The **degree** of a node in an undirected graph is the number of edges containing that node.



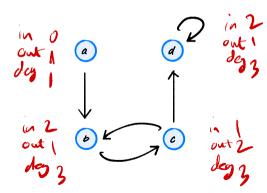
In-Degree/Out-Degree

The **in-degree** of a node in an directed graph is the number of edges **entering** that node.

The **out-degree** of a node in an directed graph is the number of edges **leaving** that node.

The **degree** of a node in a directed graph is the in-degree + out-degree.

Examples



Neighbors

Definition: in an undirected graph, the set of **neighbors** of a node *u* is the set of all nodes which share an edge with *u*.

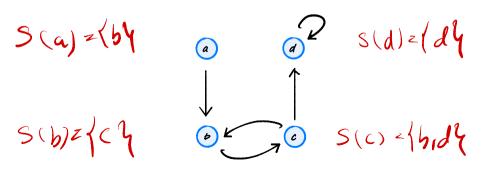
Predecessors

Definition: in an directed graph, the set of predecessors of a node *u* is the set of all nodes which are at the **start** of an edge **entering** *u*.

$$P(a) = \{d, c\}$$
 $P(b) = \{a, c\}$
 $P(b) = \{a, c\}$
 $P(c) = \{b\}$

Successors

Definition: in an directed graph, the set of <u>successors</u> of a node u is the set of all nodes which are at the **end** of an edge **leaving** u.



(a, b) EE

Succeeding A Convention

(a, b) EE

(a, b) EE

(a, b) EE

In a directed graph, the **neighbors** of *u* are the **successors** of *u*.

$$N(a) = 164$$
 $N(b) = 164$
 $N(b) = 164$
 $N(b) = 164$
 $N(c) = 164$

DSC 40B Theoretical Foundations II

Lecture 10 | Part 2

Paths

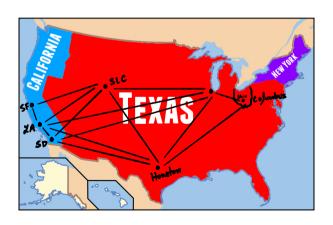
Example

+ No self-loop

directed = undirected

- Consider a graph of direct flights.
- Each node is an airport.
- Each edge is a direct flight.
- Should the graph be directed or undirected?

Example



Example

- Can we get from San Diego to Columbus?
- Not with a single edge.
- But with a path.

Definition

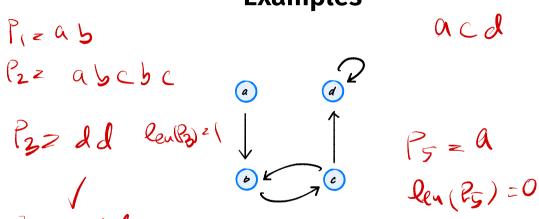
quence.

A **path** from u to u' in a (directed or undirected) graph G = (V, E) is a sequence of one or more nodes $u = v_0, v_1, ..., v_k = u'$ such that there is an edge between each consecutive pair of nodes in the se-

Path Length

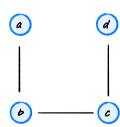
Definition: The **length** of a path is the number of nodes in the sequence, minus one. Paths of length zero are possible!

Examples



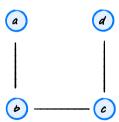
len(Py)=2

Examples



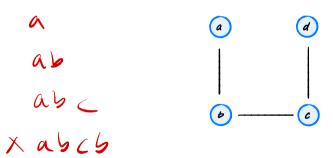
Note

Paths can go through the same node more than once!



Simple Paths

Definition: A **simple path** is a path in which every node is unique.



Reachability

Definition: node *v* is **reachable** from node *u* if there is a path from *u* to *v*.

Reachability and Directedness

- ► If *G* is undirected, reachability is symmetric.
 - ightharpoonup If u reachable from v, then v reachable from u.
- ▶ If *G* is directed, reachability is **not** symmetric.
 - If *u* reachable from *v*, then *v* may/may not be reachable from *u*.

C is reachable from a

but not vice versa

Important Trivia

In any graph, any node is **reachable** from **itself**.

DSC 40B Theoretical Foundations II

Lecture 10 | Part 3

Connected Components

A graph is **connected** if every node *u* is reachable from every other node *v*. Otherwise, it is **disconnected**.

Equivalent: there is a path between every pair of nodes.

Connected Components

A **connected component** is a maximally-connected set of nodes.

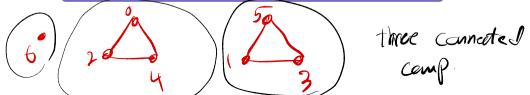
I.e., if G = (V, E) is an undirected graph, a connected component is a set $C \subset V$ such that

- ▶ any pair $u, u' \in C$ are reachable from one another; and
- if $u \in C$ and $z \notin C$ then u and z are not reachable from one another.

What are the connected components?

$$V = \{0, 1, 2, 3, 4, 5, 6\}$$

$$E = \{(0, 2), (1, 5), (3, 1), (2, 4), (0, 4), (5, 3)\}$$



What are the connected components?

$$V = \{0, 1, 2, 3, 4, 5, 6\}$$

 $E = \{(0, 2), (1, 5), (3, 1), (2, 4), (0, 4), (5, 3)\}$

DSC 40B Theoretical Foundations II

Lecture 10 | Part 4

Adjacency Matrices

Representations

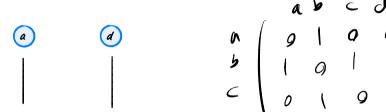
- How do we store a graph in a computer's memory?
- Three approaches:
 - 1. Adjacency matrices.

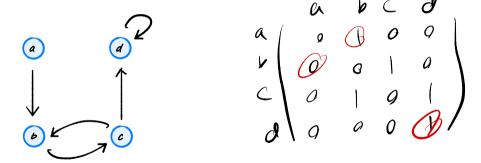
 - Adjacency lists.
 "Dictionary of sets"

Adjacency Matrices

- ► Assume nodes are numbered 0, 1, ..., |V| 1
- ► Allocate a |V| × |V| (Numpy) array
- Fill array as follows:

 - arr[i,j] = 1 if (i,j) ∈ E arr[i,j] = 0 if (i,j) \notin E





Observations

- ► If G is undirected, matrix is symmetric. + days me
- ▶ If *G* is directed, matrix may not be symmetric.

Time Complexity

operation ³	code	time
edge query degree(i)	adj[i,j] == 1 np.sum(adj[i,:])	Θ(1) Θ(V)

³For undirected graphs

Space Requirements

- ▶ Uses $|V|^2$ bits, even if there are very few edges.
- But most real-world graphs are sparse.
 - They contain many fewer edges than possible.

Example: Facebook

Facebook has 2 billion users.

```
(2 \times 10^9)^2 = 4 \times 10^{18} bits
= 500 petabits
```

≈ 6500 years of video at 1080p

≈ 60 copies of the internet as it was in 2000

Adjacency Matrices and Math

- Adjacency matrices are useful mathematically.
- Example: (i, j) entry of A^2 gives number of hops of length 2 between i and j.

DSC 40B Theoretical Foundation II

Lecture 10 | Part 5

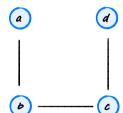
Adjacency Lists

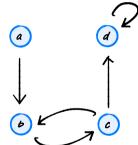
What's Wrong with Adjacency Matrices?

- Requires $Θ(|V|^2)$ storage.
- Even if the graph has no edges.
- Idea: only store the edges that exist.

Adjacency Lists

- Create a list adj containing |V| lists.
- adg[i] is list containing the neighbors of node i.





Observations

- ► If *G* is undirected, each edge appears twice.
- ► If *G* is directed, each edge appears once.

Time Complexity

operation ⁴	code	time
edge query degree(i)	j in adj[i] len(adj[i])	, , , , , ,

⁴For undirected graphs

Space Requirements

- ▶ Need $\Theta(|V|)$ space for outer list.
- ▶ Plus $\Theta(|E|)$ space for inner lists.
- ► In total: $\Theta(|V| + |E|)$ space.

Example: Facebook

- Facebook has 2 billion users, 400 billion friendships.
- If each edge requires 32 bits:

```
(2 \text{ bits} \times 200 \times (2 \text{ billion}))
```

- $= 64 \times 400 \times 10^9$ bits
- = 3.2 terabytes
- = 0.04 years of HD video

DSC 40B Theoretical Foundations II

Lecture 10 | Part 6

Dictionary of Sets

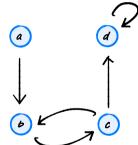
Tradeoffs

- Adjacency matrix: fast edge query, lots of space.
- Adjacency list: slower edge query, space efficient.
- Can we have the best of both?

Idea

Use hash tables.

- Replace inner edge lists by sets.
- Replace outer list with dict.
 - Doesn't speed things up, but allows nodes to have arbitrary labels.



Time Complexity

operation ⁵	code	time
edge query degree(i)	j in adj[i] len(adj[i])	

⁵For undirected graphs

Space Requirements

- ightharpoonup Requires only $\Theta(E)$.
- But there is overhead to using hash tables.

Dict-of-sets implementation

- ► Install with pip install dsc4ograph
- Import with import dsc4ograph
- Docs: https://eldridgejm.github.io/dsc4ograph/
- Source code: https://github.com/eldridgejm/dsc4ograph
- Will be used in HW coding problems.