DSC 40B Theoretical Foundations II

Lecture 10 | Part 1

Graphs

Data Types

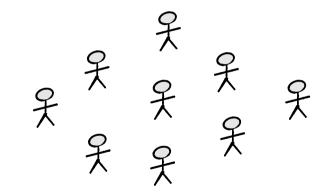
Feature vectors

We care about attributes of individuals.

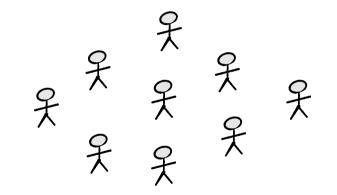
Graphs

We care about relationships between individuals.

Example: Facebook



Example: Twitter



Definition

A **directed graph** (or **digraph**) G is a pair (V, E) where V is a finite set of **nodes** (or **vertices**) and E is a set of ordered pairs (the **edges**).

Example:

a d

C

 $V = \{a, b, c, d\}$ E = {(a, c), (a, b), (d, b), (b, d), (b, b)}

Directed Graphs (More Formally)

E is a subset of the **Cartesian product**, *V* × *V*.

Example: {*a*, *b*, *c*} × {1, 2} =

Consequences

Because the edge set of a directed graph is allowed to be *any* subset of $V \times V$:

- the edges have directions.
 - e.g., (a, b) is "from a to b"
- can have "opposite" edges.
 e.g., (a, b) and (b, a).
- can have "self-loops"
 e.g., (a, a)

Definition

An **undirected graph** *G* is a pair (*V*, *E*) where *V* is a finite set of **nodes** (or **vertices**) and *E* is a set of unordered, distinct pairs (the **edges**).

d

a

Example:

 $V = \{a, b, c, d\} \\ E = \{\{a, c\}, \{a, b\}, \{d, b\}\}$

Undirected Graphs (More Formally)

An edge in an undirected graph is a set $\{u, v\}$ where $u \neq v$. This has consequences:

- the edges have no direction.
 - e.g., {a, b} is **not** "from" a "to" b.
- cannot have "opposite" edges.
 e.g., {a, b} and {b, a} are the same.
- cannot have "self-loops"
 e.g., {a, a} is not a valid edge

Notational Note

Although edges in undirected graphs are sets, we typically write them as pairs: (u, v) instead of $\{u, v\}$.

Summary

- Edges have direction:
 - Directed: yes
 - Undirected: no
- ► Self-loops, (*u*, *u*)?
 - Directed: yes
 - Undirected: no
- Opposite edges, (u, v) and (v, u)?
 - Directed: yes
 - Undirected: no (they are the same edge)

Note

Neither directed nor undirected graphs can have **duplicate edges**¹

¹There are other definitions which allow duplicate edges.

Note

Graphs don't need to be "connected"²

²There are other definitions which allow duplicate edges.

Exercise

What is the greatest number edges possible in a **directed** graph?

Counting Edges

What is the greatest number edges possible in a **directed** graph?

a d b c

Exercise

What is the greatest number edges possible in an **undirected** graph?

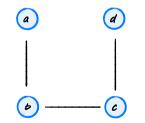
Counting Edges

What is the greatest number edges possible in an **undirected** graph?

a
d
c

Degree

The **degree** of a node in an undirected graph is the number of edges containing that node.



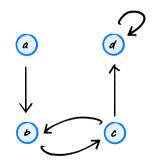
In-Degree/Out-Degree

The **in-degree** of a node in an directed graph is the number of edges **entering** that node.

The **out-degree** of a node in an directed graph is the number of edges **leaving** that node.

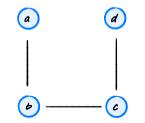
The **degree** of a node in a directed graph is the in-degree + out-degree.

Examples



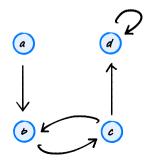
Neighbors

Definition: in an undirected graph, the set of **neighbors** of a node *u* is the set of all nodes which share an edge with *u*.



Predecessors

Definition: in an directed graph, the set of **predecessors** of a node *u* is the set of all nodes which are at the **start** of an edge **entering** *u*.



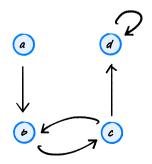
Successors

Definition: in an directed graph, the set of **successors** of a node *u* is the set of all nodes which are at the **end** of an edge **leaving** *u*.



A Convention

In a directed graph, the **neighbors** of *u* are the **successors** of *u*.



DSC 40B Theoretical Foundations II

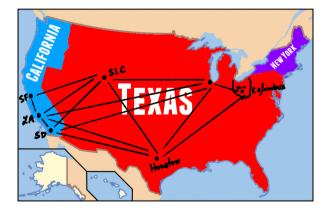
Lecture 10 | Part 2

Paths

Example

- Consider a graph of direct flights.
- Each node is an airport.
- Each edge is a direct flight.
- Should the graph be directed or undirected?

Example



Example

- Can we get from San Diego to Columbus?
- Not with a single edge.
- But with a path.

Definition

A **path** from *u* to *u'* in a (directed or undirected) graph G = (V, E) is a sequence of one or more nodes $u = v_0, v_1, ..., v_k = u'$ such that there is an edge between each consecutive pair of nodes in the sequence.

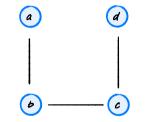
Path Length

Definition: The **length** of a path is the number of nodes in the sequence, minus one. Paths of length zero are possible!

Examples

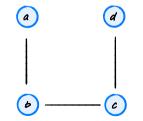


Examples



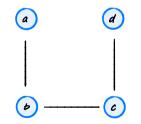
Note

Paths can go through the same node more than once!



Simple Paths

Definition: A **simple path** is a path in which every node is unique.



Reachability

Definition: node v is **reachable** from node u if there is a path from u to v.

Reachability and Directedness

If G is undirected, reachability is symmetric.
 If u reachable from v, then v reachable from u.

If G is directed, reachability is not symmetric.
 If u reachable from v, then v may/may not be reachable from u.

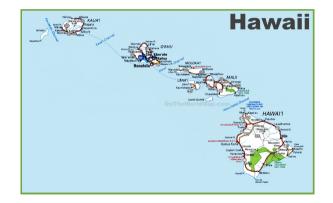
Important Trivia

In any graph, any node is reachable from itself.

DSC 40B Theoretical Foundations II

Lecture 10 | Part 3

Connected Components



Connectedness

A graph is **connected** if every node *u* is reachable from every other node *v*. Otherwise, it is **disconnected**.

Equivalent: there is a path between every pair of nodes.

Connected Components

A **connected component** is a maximally-connected set of nodes.

I.e., if G = (V, E) is an undirected graph, a connected component is a set $C \subset V$ such that

- ► any pair u, u' ∈ C are reachable from one another; and
- ▶ if $u \in C$ and $z \notin C$ then u and z are not reachable from one another.

Exercise

What are the connected components?

$$V = \{0, 1, 2, 3, 4, 5, 6\}$$

E = {(0, 2), (1, 5), (3, 1), (2, 4), (0, 4), (5, 3)}

What are the connected components?

DSC 40B Theoretical Foundations II

Lecture 10 | Part 4 Adjacency Matrices

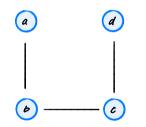
Representations

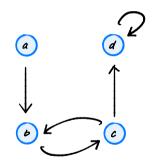
- How do we store a graph in a computer's memory?
- Three approaches:
 - 1. Adjacency matrices.

 - Adjacency lists.
 "Dictionary of sets"

Adjacency Matrices

- Assume nodes are numbered 0, 1, ..., |V| 1
- Allocate a |V| × |V| (Numpy) array
- Fill array as follows:
 arr[i,j] = 1 if (i,j) ∈ E
 arr[i,j] = 0 if (i,j) ∉ E





Observations

▶ If G is undirected, matrix is symmetric.

▶ If G is directed, matrix may not be symmetric.

Time Complexity

operation3codetimeedge queryadj[i,j] == 1 $\Theta(1)$ degree(i)np.sum(adj[i,:]) $\Theta(|V|)$

³For undirected graphs

Space Requirements

• Uses $|V|^2$ bits, even if there are very few edges.

But most real-world graphs are sparse.
 They contain many fewer edges than possible.

Example: Facebook

Facebook has 2 billion users.

$$(2 \times 10^9)^2 = 4 \times 10^{18}$$
 bits

- = 500 petabits
- \approx 6500 years of video at 1080p
- \approx 60 copies of the internet as it was in 2000

Adjacency Matrices and Math

Adjacency matrices are useful mathematically.

Example: (i, j) entry of A² gives number of hops of length 2 between i and j.

DSC 40B Theoretical Foundations II

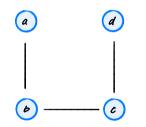
Lecture 10 | Part 5 Adjacency Lists

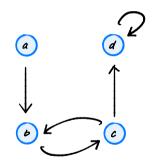
What's Wrong with Adjacency Matrices?

- ▶ Requires $\Theta(|V|^2)$ storage.
- Even if the graph has no edges.
- Idea: only store the edges that exist.

Adjacency Lists

- Create a list adj containing |V| lists.
- adg[i] is list containing the neighbors of node i.





Observations

▶ If G is undirected, each edge appears twice.

▶ If G is directed, each edge appears once.

Time Complexity

operation4codetimeedge queryj in adj[i]Θ(degree(i))degree(i)len(adj[i])Θ(1)

⁴For undirected graphs

Space Requirements

- ▶ Need Θ(|V|) space for outer list.
- Plus Θ(|E|) space for inner lists.
- In total: Θ(|V| + |E|) space.

Example: Facebook

- Facebook has 2 billion users, 400 billion friendships.
- If each edge requires 32 bits:
 - (2 bits × 200 × (2 billion)
 - = 64 × 400 × 10⁹ bits
 - = 3.2 terabytes
 - = 0.04 years of HD video

DSC 40B Theoretical Foundations II

Lecture 10 | Part 6

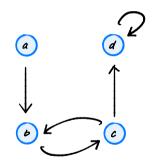
Dictionary of Sets

Tradeoffs

- Adjacency matrix: fast edge query, lots of space.
- Adjacency list: slower edge query, space efficient.
- Can we have the best of both?

Idea

- Use hash tables.
- Replace inner edge lists by sets.
- Replace outer list with dict.
 - Doesn't speed things up, but allows nodes to have arbitrary labels.



Time Complexity

operation⁵ code time edge query j in adj[i] ⊖(1) average degree(i) len(adj[i]) ⊖(1) average

⁵For undirected graphs

Space Requirements

Requires only Θ(E).

But there is overhead to using hash tables.

Dict-of-sets implementation

- Install with pip install dsc4ograph
- Import with import dsc40graph
- Docs: https://eldridgejm.github.io/dsc40graph/
- Source code: https://github.com/eldridgejm/dsc40graph
- Will be used in HW coding problems.