
Lecture 11 | Part 1

Adjacency Matrices (Recap)

Representations
▶ How do we store a graph in a computer’s
memory?

▶ Three approaches:
1. Adjacency matrices.
2. Adjacency lists.
3. “Dictionary of sets”

Adjacency Matrices
▶ Assume nodes are numbered 0, 1, …, |𝑉| − 1

▶ Allocate a |𝑉| × |𝑉| (Numpy) array

▶ Fill array as follows:
▶ arr[i,j] = 1 if (𝑖, 𝑗) ∈ 𝐸
▶ arr[i,j] = 0 if (𝑖, 𝑗) ∉ 𝐸

Example

Example

Observations
▶ If 𝐺 is undirected, matrix is symmetric.

▶ If 𝐺 is directed, matrix may not be symmetric.

Time Complexity
operation code time
edge query adj[i,j] == 1 Θ(1)
degree(𝑖) np.sum(adj[i,:]) Θ(|𝑉|)

Space Requirements

▶ Uses |𝑉|2 bits, even if there are very few edges.

▶ But most real-world graphs are sparse.
▶ They contain many fewer edges than possible.

Example: Facebook
▶ Facebook has 2 billion users.

(2 × 109)2 = 4 × 1018 bits
= 500 petabits
≈ 6500 years of video at 1080p
≈ 60 copies of the internet as it was in 2000

Adjacency Matrices and Math
▶ Adjacency matrices are useful mathematically.

▶ Example: (𝑖, 𝑗) entry of 𝐴2 gives number of hops
of length 2 between 𝑖 and 𝑗.

Lecture 11 | Part 2

Adjacency Lists

What’s Wrong with Adjacency
Matrices?

▶ Requires Θ(|𝑉|2) storage.

▶ Even if the graph has no edges.

▶ Idea: only store the edges that exist.

Adjacency Lists
▶ Create a list adj containing |𝑉| lists.

▶ adg[i] is list containing the neighbors of node 𝑖.

Example

Example

Observations
▶ If 𝐺 is undirected, each edge appears twice.

▶ If 𝐺 is directed, each edge appears once.

Time Complexity
operation code time
edge query j in adj[i] Θ(degree(𝑖))
degree(𝑖) len(adj[i]) Θ(1)

Space Requirements
▶ Need Θ(|𝑉|) space for outer list.

▶ Plus Θ(|𝐸|) space for inner lists.

▶ In total: Θ(|𝑉| + |𝐸|) space.

Example: Facebook
▶ Facebook has 2 billion users, 400 billion
friendships.

▶ If each edge requires 32 bits:

(2 bits × 200 × (2 billion)
= 64 × 400 × 109 bits
= 3.2 terabytes
= 0.04 years of HD video

Lecture 11 | Part 3

Dictionary of Sets

Tradeoffs
▶ Adjacency matrix: fast edge query, lots of space.

▶ Adjacency list: slower edge query, space efficient.

▶ Can we have the best of both?

Idea
▶ Use hash tables.

▶ Replace inner edge lists by sets.

▶ Replace outer list with dict.
▶ Doesn’t speed things up, but allows nodes to have
arbitrary labels.

Example

Time Complexity
operation code time
edge query j in adj[i] Θ(1) average
degree(𝑖) len(adj[i]) Θ(1) average

Space Requirements
▶ Requires only Θ(𝐸).

▶ But there is overhead to using hash tables.

Dict-of-sets implementation
▶ Install with pip install dsc40graph

▶ Import with import dsc40graph

▶ Docs: https://eldridgejm.github.io/dsc40graph/

▶ Source code:
https://github.com/eldridgejm/dsc40graph

▶ Will be used in HW coding problems.

https://eldridgejm.github.io/dsc40graph/
https://github.com/eldridgejm/dsc40graph

Lecture 11 | Part 4

Graph Search Strategies

How do we:
▶ determine if there is a path between two nodes?

▶ check if graph is connected?

▶ count connected components?

Search Stategies
▶ A search strategy is a procedure for exploring a
graph.

▶ Different strategies are useful in different
situations.

Node Statuses
At any point during a search, a node is in exactly one
of three states:
▶ visited
▶ pending (discovered, but not yet visited)
▶ undiscovered

Rules
▶ At every step, next visited node chosen from
among pending nodes.

▶ When a node is marked as visited, all of its
neighbors have been marked as pending.

Choosing the next Node
How to choose among pending nodes?
▶ Idea 1: Visit newest pending (depth-first search).
▶ Idea 2: Visit oldest pending (breadth-first search).

Main Idea
DFS and BFS each discover different properties of
the graph.

For example, we’ll see that BFS is useful for finding
shortest paths (DFS in general is not).

Lecture 11 | Part 5

Breadth-First Search

Breadth-First Search
▶ At every step:

1. Visit oldest pending node.
2. Mark its undiscovered neighbors as pending.

▶ Convention: in this class, neighbors produced in
sorted order.1

1In general, the order in which a node’s neighbors produced is arbitrary.

Example

1

2

3

4

5

6

7

8

9

Example

1

2

3

4

5

6

7

8

9

pending = [1]

Before iterating.

Example

1

2

3

4

5

6

7

8

9

pending = [2,4]

After 1st iteration.

Example

1

2

3

4

5

6

7

8

9

pending = [4,3,5,6]

After 2nd iteration.

Exercise: what will the picture look like after each of
the next two iterations?

Example

1

2

3

4

5

6

7

8

9

pending = [3,5,6,7]

After 3rd iteration.

Example

1

2

3

4

5

6

7

8

9

pending = [5,6,7]

After 4th iteration.

Example

1

2

3

4

5

6

7

8

9

pending = [6,7,9]

After 5th iteration.

Example

1

2

3

4

5

6

7

8

9

pending = [7,9]

After 6th iteration.

Example

1

2

3

4

5

6

7

8

9

pending = [9,8]

After 7th iteration.

Example

1

2

3

4

5

6

7

8

9

pending = [8]

After 8th iteration.

Example

1

2

3

4

5

6

7

8

9

pending = []

After 9th iteration.

Implementation
▶ To store pending nodes, use a FIFO queue.

▶ While queue is not empty:
▶ Pop a node, u.
▶ Add undiscovered neighbors to queue.

Queues in Python
▶ Want Θ(1) time pops/appends on either side.

▶ from collections import deque (“deck”).
▶ .popleft() and .pop()
▶ list doesn’t have right time complexity!
▶ import queue isn’t what you want!

▶ Keep track of node status attribute using
dictionary.

Exercise
from collections import deque
def bfs(graph, source):

”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}
status[source] = 'pending'
pending = deque([source])
while there are still pending nodes
while pending:

EXERCISE: fill this in...

BFS
from collections import deque
def bfs(graph, source):

”””Start a BFS at `source`.”””
status = {node: 'undiscovered' for node in graph.nodes}
status[source] = 'pending'
pending = deque([source])
while there are still pending nodes
while pending:

u = pending.popleft()
for v in graph.neighbors(u):

explore edge (u,v)
if status[v] == 'undiscovered':

status[v] = 'pending'
append to right
pending.append(v)

status[u] = 'visited'

Note
▶ What does this code actually return?

▶ Nothing, yet. It is a foundation.

Note
▶ What does this code actually return?

▶ Nothing, yet. It is a foundation.

Note
▶ BFS works just as well for directed graphs.

Lecture 11 | Part 6

Analysis of BFS

Exercise
What will bfs do when run on a disconnected
graph?

Claim
▶ bfs with source 𝑢 will visit all nodes reachable
from 𝑢 (and only those nodes).

▶ Useful!
▶ Is there a path between 𝑢 and 𝑣?
▶ Is graph connected?

Exploring with BFS
▶ BFS will visit all nodes reachable from source.

▶ If disconnected, BFS will not visit all nodes.

▶ We can do so with a full BFS.
▶ Idea: “re-start” BFS on undiscovered node.
▶ Must pass statuses between calls.

Making Full BFS
Modify bfs to accept statuses:

def bfs(graph, source, status=None):
”””Start a BFS at `source`.”””
if status is None:

status = {node: 'undiscovered' for node in graph.nodes}
...

Making Full BFS
Call bfs multiple times:
def full_bfs(graph):

status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:

if status[node] == 'undiscovered':
bfs(graph, node, status)

Example

Observation
▶ If there are 𝑘 connected components, bfs in line
5 is called exactly 𝑘 times.

1 def full_bfs(graph):
2 status = {node: 'undiscovered' for node in graph.nodes}
3 for node in graph.nodes:
4 if status[node] == 'undiscovered':
5 bfs(graph, node, status)

Exercise
How many times is each node added to the queue
in a BFS of the graph below?

1

2

3

4

5

6

7

8

9

Exercise
How many times is each edge “explored” in a BFS
of the graph below?

1

2

3

4

5

6

7

8

9

Exercise
How many times is each edge “explored” in a BFS
of the directed graph below?

1

2

3

4

5

6

7

8

9

Key Properties of full_bfs
▶ Each node added to queue exactly once.

▶ Each edge is explored exactly:
▶ once if graph is directed.
▶ twice if graph is undirected.

Time Complexity of full_bfs
▶ Analyzing full_bfs is easier than analyzing bfs.

▶ full_bfs visits all nodes, no matter the graph.

▶ Result will be upper bound on time complexity
of bfs.

▶ We’ll use an aggregate analysis.

BFS
def bfs(graph, source, status=None):

”””Start a BFS at `source`.”””
if status is None:

status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes
while pending:

u = pending.popleft()
for v in graph.neighbors(u):

explore edge (u,v)
if status[v] == 'undiscovered':

status[v] = 'pending'
append to right
pending.append(v)

status[u] = 'visited'

Time Complexity
def full_bfs(graph):

status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:

if status[node] == 'undiscovered':
bfs(graph, node, status)

def bfs(graph, source, status=None):
”””Start a BFS at `source`.”””
if status is None:

status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes
while pending:

u = pending.popleft()
for v in graph.neighbors(u):

explore edge (u,v)
if status[v] == 'undiscovered':

status[v] = 'pending'
append to right
pending.append(v)

status[u] = 'visited'

Time Complexity of Full BFS
▶ Θ(𝑉 + 𝐸)

▶ If |𝑉| > |𝐸|: Θ(𝑉)

▶ If |𝑉| < |𝐸|: Θ(𝐸)

▶ Namely, if graph is complete: Θ(𝑉2).

▶ Namely, if graph is very sparse: Θ(𝑉).

Notational Note
▶ We’ll often write Θ(𝑉 + 𝐸) instead of Θ(|𝑉| + |𝐸|).

▶ You can use whichever.

Next Time
▶ Finding shortest paths using BFS.

