DSC 408

Tm%ca/ Founolatong 7L

Lecture 12 Part1

Warmup: Aggregate Analysis

8(v)

6 (E)

Time Complexity

def full_bfs(graph):
status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:
if status[node] == 'undiscovered'
bfs(graph, node, status)

def bfs(graph, source, status=None):
"""Start a BFS at ‘source’.””"”
if status is None:
status = {node: 'undiscovered' for node in graph.nodes}

status[source] = 'pending'
pending = deque([source])

while there are still pending nodes
while pending: O
u = pending.popleft
for v in graph.neighbors(u): ATO}‘(
explore edge (u,v)
if status[v] == 'undiscovered':
status[v] = 'pending'
append to right
pending.append(v)
status[u] = 'visited'

8(V4E)

What is printed if we run a BFS starting at a?

while pending:
u = pending.popleft()
print(f'Popped {u}')
@\ @ for v in graph.neighbors(u):
print(f'Exploring edge ({u}, {v})")

explore edge (u,v)
//G)

Popping a
Exploring
Exploring
Popping b
Exploring
Exploring
Exploring
Popping c
Exploring
Exploring
Exploring
Exploring

edge
edge

edge
edge
edge

edge
edge
edge
edge

(a,
(a,

(b,
(b,

(c,
(c,
(c,
(c,

Answer

Popping d
Exploring
Exploring
Exploring
Popping e
Exploring
Exploring
Exploring
Popping f
Exploring

edge
edge
edge

edge
edge
edge

edge

(d,
(d,
(e,
(e,
(e,

(f,

b)
c)
e)

c)
d)
f)

e)

Aggregate Analysis

During any one call to bfs:
Number of printed nodes: ?
Number of printed edges: ?

In aggregate (over all calls):
Number of printed nodes: exactly |V|
Number of printed edges: exactly 2|E|

Time Complexity

Full BFS takes O(V + E)

Time Complexity
Full BFS takes O(V + E)
Why not just ©(E)?

O(V + E) works for all graphs.
If we know more about the number of edges, we
might be able to simplify.
E.g., if the graph is complete, E = O(V2), so time
complexity is O(V + V?) = O(V?).

psc 4058

TW?QM/ Founolathong ZL

Lecture 12 | Part 2
Shortest Paths

Recall

The length of a path is

(# of nodes) - 1

“ @ Definitions "'>“ /{

A shortest path between u and v is a path

4

between u and v with smallest possible length.

There may be several, or none at all.

The shortest path distance is the length of a

shortest path.
Convention: oo if no path exists.
“the distance between u and v” means spd.

Today: Shortest Paths

Given: directed/undirected graph G, source u

Goal: find shortest path from u to every other node

Example

@/@—@1
@
@CPX@/ 3

Key Property

A shortest path of length k is composed of:

A shortest path of length k - 1.
Plus one edge.

Algorithm Idea & |
\
N
Find all nodes distance 1 from source.

Use these to find all nodes distance 2 from source.

Use these to find all nodes distance 3 from source.

It turns out...

...this is exactly what BFS does.

DSC 408

TW?QCG/ Founolathong ZL

Lecture 12 Part 3
BFS for Shortest Paths

Key Property of BFS

For any kR 2 1 you choose:

All nodes distance k-1 from source are added to
the queue before any node of distance k.

Therefore, nodes are “processed” (popped from
queue) in order of distance from source.

Discovering Shortest Paths

We “discover” shortest paths when we pop a
node from queue and look at its neighbors.

But the neighbor’s status matters!

Consider This &_/’

We pop a node s.
It has a neighbor v whose status is

We've discovered a shortest path to v through s!

Consider This @/\ 2
We pop a node s. <4

It has a neighbor v whose status is or
visited.

We already have a shortest path to v.

Modifying BFS %{ 7

Use BFS “framework”,

Return dictionary of search predecessors.
If v is discovered while visiting u, we say that u is the
BFS predecessor of v.
This encodes the shortest paths.

Also return dictionary of shortest path distances.

def bfs_shortest_paths(graph, source):
"""Start a BFS at ‘source .”””
status = {node: 'undiscovered' for node in graph.nodes}
distance = {node: float('inf') for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}

status[source] = 'pending'

distance[source] = o @‘1

pending = deque([sourcel)

while there are still pending nodes

while pending: OLf‘
u = pending.popleft()
for v in graph.neighbors(u):

explore edge (u,v)

if status[v] == 'undiscovered':
status[v] = 'pending'
distance[v] = distancel[u] + 1
predecessor[v] = u
append to right
pending.append(v)

status[u] = 'visited'

return predecessor, distance

Example

psc 408

Thm’éfca/ Founolatong ZL

Lecture 12 Part 4
BFS Trees

Result of BFS

Each node reachable from source has a single

BFS predecessor.
Except for the source itself.

The result is a tree (or forest).

I/L———\L Trees

A (free) tree is an undirected graph T = (V, E)
such that T is connected and |E| = |V] - 1.

A forest is graph in which each connected
component is a tree.

BFS Trees (Forests)

If the input is connected, BFS produces a tree.

If the input is not connected, BFS produces a
forest.

Example

® 0—0

AN

W —=0>"

Example
A o —-23
ANy
% O

N

O

BFS Trees

BFS trees and forests encode shortest path
distances.

