DSC 40B Theoretical Foundations II

Lecture 13 | Part 1

**Depth First Search** 

### **Visiting the Next Node**

- Which node do we process next in a search?
- BFS: the **oldest** pending node.
- DFS (today): the **newest** pending node.
  - Naturally recursive.
  - Useful for solving different problems.

### Example (BFS)



### Example (DFS)

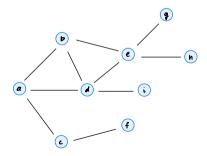


```
def dfs(graph, u, status=None):
    """Start a DFS at `u`."""
    # initialize status if it was not passed
    if status is None:
        status = {node: 'undiscovered' for node in graph.nodes}
```

```
status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)
    if status[v] == 'undiscovered':
        dfs(graph, v, status)
status[u] = 'visited'
```

#### Exercise

# Write the nested function calls for a DFS on the graph below.



```
def dfs(graph, u, status=None):
    """Start a DFS at `u`."""
    ...
    status[u] = 'pending'
    for v in graph.neighbors(u): # explore edge (u, v)
        if status[v] == 'undiscovered':
            dfs(graph, v, status)
        status[u] = 'visited'
```

### Differences

- ▶ In **BFS**, we "finish" a node *u* before moving on to the next.
- ▶ In **DFS**, we go to many other nodes, but "come back" to *u*.

#### Main Idea

We'll see that the nested structure of the **recursive function calls** gives us useful new information about the graph's structure.

### **Full DFS**

dfs(u) will visit all nodes reachable from u.
 But not all nodes may be reachable from u!

#### To visit all nodes in graph, need full DFS.

```
def full_dfs(graph):
    status = {node: 'undiscovered' for node in graph.nodes;
    for node in graph.nodes:
        if status[node] == 'undiscovered'
            dfs(graph, node, status)
```

```
def full dfs(graph):
    status = {node: 'undiscovered' for node in graph.nodes}
    for node in graph.nodes:
        if status[node] == 'undiscovered'
            dfs(graph. node. status)
def dfs(graph, u, status=None):
    """Start a DES at `u`."""
    # initialize status if it was not passed
    if status is None:
        status = {node: 'undiscovered' for node in graph.nodes}
    status[u] = 'pending'
    for v in graph.neighbors(u): # explore edge (u, v)
        if status[v] == 'undiscovered':
            dfs(graph, v, status)
```

```
status[u] = 'visited'
```

## **Time Complexity**

#### In a full DFS:

- dfs called on each node exactly once.
- Like BFS, each edge is explored exactly:
  - once if directed
  - twice if undirected

#### Time: Θ(V + E), just like BFS.

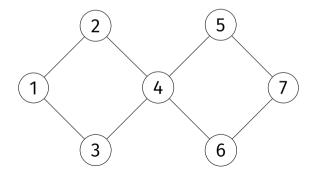
DSC 40B Theoretical Foundations II

Lecture 13 | Part 2

**Nesting Properties of DFS** 

#### Exercise

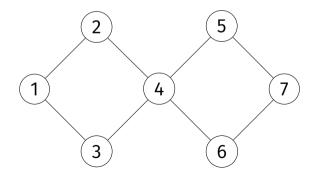
**True** or **False**: if v is reachable from u and v is **undiscovered** when dfs(u) is called, then dfs(v) must be called during dfs(u).



#### False!

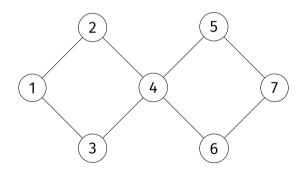
#### Suppose dfs(4) is the root call.

- When dfs(1) is called, node 5 is undiscovered.
- But dfs(5) is not called during dfs(1).



#### However..

This intuition is correct if there is a path of undiscovered nodes from u to v when dfs(u) is called.



# Key Property of DFS (Informal)

If at the time dfs(u) is called...

- 1. v is undiscovered; and
- 2. there is a path of **undiscovered** nodes from *u* to *v*,

...then dfs(v) will start and finish during the call to dfs(u).

#### Exercise

Suppose while visiting node *u*, we see that neighbor *v* is **pending**. True or False: there is a path from *v* to *u*.

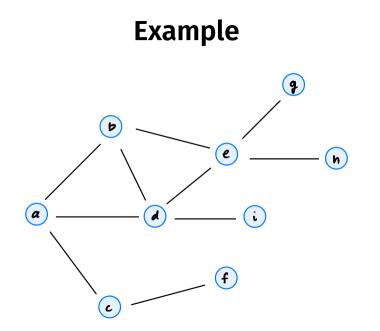
### **Start and Finish Times**

- Keep a running clock (an integer).
- For each node, record
   Start time: time when marked pending
   Finish time: time when marked visited
- Increment clock whenever node is marked pending/visited

#### from dataclasses import dataclass

@dataclass

```
class Times.
   clock: int
   start. dict
   finish: dict
def full dfs times(graph):
    status = {node: 'undiscovered' for node in graph.nodes}
   predecessor = {node: None for node in graph.nodes}
   times = Times(clock=0, start={}, finish={})
   for u in graph.nodes:
       if status[u] == 'undiscovered':
            dfs times(graph. u. status. times)
    return times, predecessor
def dfs times(graph. u. status. predecessor. times):
   times clock += 1
   times.start[u] = times.clock
   status[u] = 'pending'
   for v in graph.neighbors(u): # explore edge (u, v)
       if status[v] == 'undiscovered':
            predecessor[v] = u
           dfs times(graph, v, status, times)
   status[u] = 'visited'
   times.clock += 1
   times.finish[u] = times.clock
```



## **Key Property of DFS**

- Suppose dfs(u) is called before dfs(v).
- If when dfs(u) is called there is a path of undiscovered nodes from u to v, then: start[u] < start[v] < finish[v] < finish[u].</p>
- Otherwise:
  - start[u] < finish[u] < start[v] < finish[v].</pre>

### **Key Property**

- Take any two nodes u and v ( $u \neq v$ ).
- Assume for simplicity that start[u] < start[v].</p>
- Exactly one of these is true:
   start[u] < start[v] < finish[v] < finish[u]
   start[u] < finish[u] < start[v] < finish[v]</pre>

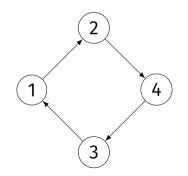
DSC 40B Theoretical Foundations II

Lecture 13 | Part 3

**Cycles** 

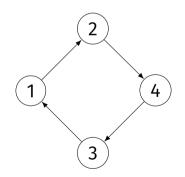
# Cycle

A cycle in a directed graph is a path that starts and ends at the same node.



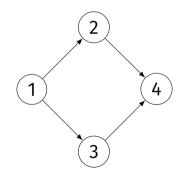
# Cycle

Alternatively: there is a cycle if u is reachable from v and v is reachable from u, for some  $u \neq v$ .



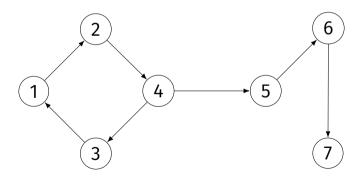
#### DAG

A directed acyclic graph (DAG) is a directed graph with no cycles.



## **Cyclic Graphs**

A graph is cyclic even if it has only one cycle.
 It doesn't have to be the whole graph.



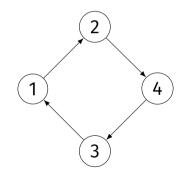
# **Detecting Cycles**

- We check for cycles by looking for back edges in a full DFS.
- (u, v) is a back edge if while visiting node u, we see that v is pending.

```
for v in graph.neighbors(u): # explore edge (u, v)
    if status[v] == 'undiscovered':
        dfs(graph, v, status)
    elif status[v] == 'pending':
        # back edge (u, v) found!
```

. . .

### Example



#### Theorem

# A directed graph has a cycle **if (and only if)** a full DFS finds a back edge.

# Why?

- ▶ If a back edge (*u*, *v*) is found, then a cycle exists.
  - Suppose v is pending when we visit u.
  - ▶ This means that there is a path from *v* to *u*.
  - There is also a path from *u* to *v*.
  - ▶ So there is a cycle.

# Why?

- If a cycle exists, then there is a back edge.
  - Suppose there is a cycle  $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k \rightarrow v_1$ .
  - Without loss of generality, assume v<sub>1</sub> is the first node in the cycle that is visited by the full DFS.
  - At the moment of dfs(v\_1), there is a path of undiscovered nodes between v<sub>1</sub> and v<sub>k</sub>.
  - Therefore dfs(v\_k) will be called during dfs(v\_1).
  - During dfs(v\_k), we'll see the back edge.

#### Exercise

Suppose *v* is reachable from *u* in a DAG.

True or false: after a full DFS, finish[v] <
finish[u].</pre>

### Claim

#### If v is reachable from u in a DAG, then: finish[v] < finish[u]</p>

DSC 40B Theoretical Foundations II

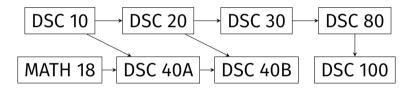
Lecture 13 | Part 4

**Topological Sort** 

# **Applications of DFS**

- Is node v reachable from node u? DFS, BFS
- Is the graph connected? DFS, BFS
- How many connected components? DFS, BFS
- Find the shortest path between u and v. DFS, BFS
- Does the graph have a cycle? DFS, BFS

### **Prerequisite Graphs**



**Goal:** find order in which classes should be taken in order to satisfy the prerequisites of DSC 100.

#### Note

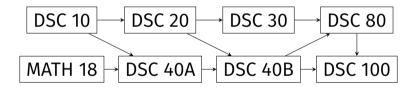
#### Prerequisite graphs are<sup>1</sup> DAGs.

<sup>1</sup>Or they should be, at least!

### **Topological Sorts**

- **Given**: a DAG, *G* = (*V*, *E*).
- **Compute**: an ordering of V such that if  $(u, v) \in E$ , then u comes before v in the ordering
- This is called a topological sort of G.

### Example



MATH 18, DSC 10, DSC 40A, DSC 20, DSC 40B, DSC 30, DSC 80, DSC 100

# Computing a Topological Sort

- How do we compute a topological sort, algorithmically?
- Observation: if v is reachable from u, v must come after u in the topological sort.

$$(A) \longrightarrow (B) \longrightarrow (C) \longrightarrow (D)$$

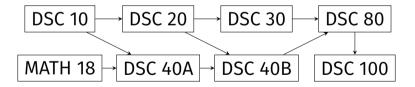
### Recall

- Take any two nodes u and v ( $u \neq v$ ).
- Assume the graph is a DAG, run DFS.
- If v is reachable from u, then finish[v] < finish[u].</p>

# Putting it together...

- Observation: If v is reachable from u, then v must come after u in the topological sort.
- Recall: If v is reachable from u, then finish[v] < finish[u].</p>





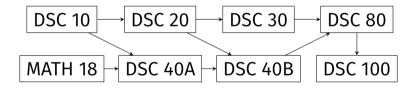
### Idea

- Observation: If v is reachable from u, then v must come after u in the topological sort.
- Recall: If v is reachable from u, then finish[v] < finish[u].</p>
- Therefore: if finish[v] < finish[u], then v must come after u in the topological sort.
- Idea: sort nodes in descending order by finish time.

# Algorithm

- To find a topological sort (if it exists):
   Compute times with Full DFS.
   Sort in **descending** order by finish time.
- ► Time complexity:

#### Example



#### Note

#### There can be many valid topological sorts!