
Lecture 13 | Part 1

Depth First Search

Visiting the Next Node
▶ Which node do we process next in a search?

▶ BFS: the oldest pending node.

▶ DFS (today): the newest pending node.
▶ Naturally recursive.
▶ Useful for solving different problems.

Example (BFS)

u

Example (DFS)

u

def dfs(graph, u, status=None):
”””Start a DFS at `u`.”””
initialize status if it was not passed
if status is None:

status = {node: 'undiscovered' for node in graph.nodes}

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

Exercise
Write the nested function calls for a DFS on the
graph below.

def dfs(graph, u, status=None):
”””Start a DFS at `u`.”””
...
status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

Differences
▶ In BFS, we “finish” a node 𝑢 before moving on to the next.
▶ In DFS, we go to many other nodes, but “come back” to 𝑢.

Main Idea
We’ll see that the nested structure of the recur-
sive function calls gives us useful new information
about the graph’s structure.

Full DFS
▶ dfs(u) will visit all nodes reachable from 𝑢.

▶ But not all nodes may be reachable from 𝑢!

▶ To visit all nodes in graph, need full DFS.

def full_dfs(graph):
status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:

if status[node] == 'undiscovered'
dfs(graph, node, status)

def full_dfs(graph):
status = {node: 'undiscovered' for node in graph.nodes}
for node in graph.nodes:

if status[node] == 'undiscovered'
dfs(graph, node, status)

def dfs(graph, u, status=None):
”””Start a DFS at `u`.”””
initialize status if it was not passed
if status is None:

status = {node: 'undiscovered' for node in graph.nodes}

status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

status[u] = 'visited'

Time Complexity
▶ In a full DFS:

▶ dfs called on each node exactly once.
▶ Like BFS, each edge is explored exactly:

▶ once if directed
▶ twice if undirected

▶ Time: Θ(𝑉 + 𝐸), just like BFS.

Lecture 13 | Part 2

Nesting Properties of DFS

Exercise
True or False: if 𝑣 is reachable from 𝑢 and 𝑣 is
undiscovered when dfs(u) is called, then dfs(v)
must be called during dfs(u).

1

2

3

4

5

6

7

False!
▶ Suppose dfs(4) is the root call.

▶ When dfs(1) is called, node 5 is undiscovered.
▶ But dfs(5) is not called during dfs(1).

1

2

3

4

5

6

7

However..
▶ This intuition is correct if there is a path of undiscovered
nodes from 𝑢 to 𝑣 when dfs(u) is called.

1

2

3

4

5

6

7

Key Property of DFS (Informal)
▶ If at the time dfs(u) is called...

1. 𝑣 is undiscovered; and
2. there is a path of undiscovered nodes from 𝑢 to 𝑣,

▶ ...then dfs(v) will start and finish during the call
to dfs(u).

Exercise
Suppose while visiting node 𝑢, we see that neigh-
bor 𝑣 is pending. True or False: there is a path from
𝑣 to 𝑢.

Start and Finish Times
▶ Keep a running clock (an integer).

▶ For each node, record
▶ Start time: time when marked pending
▶ Finish time: time when marked visited

▶ Increment clock whenever node is marked
pending/visited

from dataclasses import dataclass

@dataclass
class Times:

clock: int
start: dict
finish: dict

def full_dfs_times(graph):
status = {node: 'undiscovered' for node in graph.nodes}
predecessor = {node: None for node in graph.nodes}
times = Times(clock=0, start={}, finish={})
for u in graph.nodes:

if status[u] == 'undiscovered':
dfs_times(graph, u, status, times)

return times, predecessor

def dfs_times(graph, u, status, predecessor, times):
times.clock += 1
times.start[u] = times.clock
status[u] = 'pending'
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
predecessor[v] = u
dfs_times(graph, v, status, times)

status[u] = 'visited'
times.clock += 1
times.finish[u] = times.clock

Example

Key Property of DFS
▶ Suppose dfs(u) is called before dfs(v).

▶ If when dfs(u) is called there is a path of
undiscovered nodes from 𝑢 to 𝑣, then:
start[u] < start[v] < finish[v] < finish[u].

▶ Otherwise:
start[u] < finish[u] < start[v] < finish[v].

Key Property
▶ Take any two nodes 𝑢 and 𝑣 (𝑢 ≠ 𝑣).

▶ Assume for simplicity that start[u] < start[v].

▶ Exactly one of these is true:
▶ start[u] < start[v] < finish[v] < finish[u]
▶ start[u] < finish[u] < start[v] < finish[v]

Lecture 13 | Part 3

Cycles

Cycle
▶ A cycle in a directed graph is a path that starts
and ends at the same node.

1

2

3

4

Cycle
▶ Alternatively: there is a cycle if 𝑢 is reachable
from 𝑣 and 𝑣 is reachable from 𝑢, for some 𝑢 ≠ 𝑣.

1

2

3

4

DAG
▶ A directed acyclic graph (DAG) is a directed graph
with no cycles.

1

2

3

4

Cyclic Graphs
▶ A graph is cyclic even if it has only one cycle.

▶ It doesn’t have to be the whole graph.

1

2

3

4 5

6

7

Detecting Cycles
▶ We check for cycles by looking for back edges in
a full DFS.

▶ (𝑢, 𝑣) is a back edge if while visiting node 𝑢, we
see that 𝑣 is pending.

...
for v in graph.neighbors(u): # explore edge (u, v)

if status[v] == 'undiscovered':
dfs(graph, v, status)

elif status[v] == 'pending':
back edge (u, v) found!

...

Example

1

2

3

4

Theorem
A directed graph has a cycle if (and only if) a full DFS
finds a back edge.

Why?
▶ If a back edge (𝑢, 𝑣) is found, then a cycle exists.

▶ Suppose 𝑣 is pending when we visit 𝑢.
▶ This means that there is a path from 𝑣 to 𝑢.
▶ There is also a path from 𝑢 to 𝑣.
▶ So there is a cycle.

Why?
▶ If a cycle exists, then there is a back edge.

▶ Suppose there is a cycle 𝑣1 → 𝑣2 → ⋯→ 𝑣𝑘 → 𝑣1.
▶ Without loss of generality, assume 𝑣1 is the first node
in the cycle that is visited by the full DFS.

▶ At the moment of dfs(v_1), there is a path of
undiscovered nodes between 𝑣1 and 𝑣𝑘.

▶ Therefore dfs(v_k) will be called during dfs(v_1).
▶ During dfs(v_k), we’ll see the back edge.

Exercise
Suppose 𝑣 is reachable from 𝑢 in a DAG.

True or false: after a full DFS, finish[v] <
finish[u].

Claim
▶ If 𝑣 is reachable from 𝑢 in a DAG, then:

finish[v] < finish[u]

Lecture 13 | Part 4

Topological Sort

Applications of DFS
▶ Is node 𝑣 reachable from node 𝑢? DFS, BFS

▶ Is the graph connected? DFS, BFS

▶ How many connected components? DFS, BFS

▶ Find the shortest path between 𝑢 and 𝑣. DFS, BFS

▶ Does the graph have a cycle? DFS, BFS

Prerequisite Graphs

DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 DSC 100

Goal: find order in which classes should be taken in
order to satisfy the prerequisites of DSC 100.

Note
▶ Prerequisite graphs are1 DAGs.

1Or they should be, at least!

Topological Sorts
▶ Given: a DAG, 𝐺 = (𝑉, 𝐸).

▶ Compute: an ordering of 𝑉 such that if (𝑢, 𝑣) ∈ 𝐸,
then 𝑢 comes before 𝑣 in the ordering

▶ This is called a topological sort of 𝐺.

Example

DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 DSC 100

MATH 18, DSC 10, DSC 40A, DSC 20, DSC 40B, DSC 30, DSC 80, DSC 100

Computing a Topological Sort
▶ How do we compute a topological sort,
algorithmically?

▶ Observation: if 𝑣 is reachable from 𝑢, 𝑣 must
come after 𝑢 in the topological sort.

A B C D

Recall
▶ Take any two nodes 𝑢 and 𝑣 (𝑢 ≠ 𝑣).

▶ Assume the graph is a DAG, run DFS.

▶ If 𝑣 is reachable from 𝑢, then
finish[v] < finish[u].

Putting it together...
▶ Observation: If 𝑣 is reachable from 𝑢, then 𝑣
must come after 𝑢 in the topological sort.

▶ Recall: If 𝑣 is reachable from 𝑢, then
finish[v] < finish[u].

Exercise
Compute start and finish times using DSC 10 as the
source.

DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 DSC 100

Idea
▶ Observation: If 𝑣 is reachable from 𝑢, then 𝑣 must
come after 𝑢 in the topological sort.

▶ Recall: If 𝑣 is reachable from 𝑢, then
finish[v] < finish[u].

▶ Therefore: if finish[v] < finish[u], then 𝑣
must come after 𝑢 in the topological sort.

▶ Idea: sort nodes in descending order by finish
time.

Algorithm
▶ To find a topological sort (if it exists):

▶ Compute times with Full DFS.
▶ Sort in descending order by finish time.

▶ Time complexity:

Example

DSC 10 DSC 20 DSC 30

DSC 40A DSC 40B

DSC 80

MATH 18 DSC 100

Note
▶ There can be many valid topological sorts!

