
Lecture 14 | Part 1

Shortest Paths in Weighted Graphs

Google Maps

Google Maps

Weighted Graphs
An edge weighted graph 𝐺 = (𝑉, 𝐸,𝜔) is a triple where
(𝑉, 𝐸) is a graph and 𝜔 ∶ 𝐸 → ℝ maps each edge to a
weight.

▶ Can be directed or undirected.
▶ In general, weights can be positive, negative, zero.
▶ Many uses, such as representing metric spaces.

Path Lengths
The length of a path in a weighted graph (usually)
refers to the total weight of all edges in the path.

Example: (SD, Riverside, Bakersfield, SF)

Shortest Paths
▶ A shortest path between 𝑢 and 𝑣 is a path
between 𝑢 and 𝑣 with minimum length.

▶ In other words, minimum total weight.

Example

What is the shortest path from 𝑣1 to 𝑣6?

Path:
Length:

Today (and next time)
How do we find shortest paths in weighted graphs?

Idea #0
▶ Does BFS work?

▶ No, not really. Only if all weights are the same.

▶ Can we “convert” a weighted graph to an
unweighted one?

Idea #0

Idea #0

Idea #0
▶ Step 1: “Convert” weighted graph to unweighted
one with dummy nodes.

▶ Step 2: Call BFS on this new graph.

Idea #0
▶ Very inefficient for large weights.

▶ What if edge weights are floats, or negative?

Ideas #1 and #2
▶ We’ll look at two algorithms: Bellman-Ford and
Dijkstra’s.

INPUT: weighted graph, source vertex 𝑠.
OUTPUT: shortest paths from 𝑠 to every other node.

▶ Both work by:
▶ keeping track of shortest known path (estimates).
▶ iteratively updating these until they’re correct.

Shortest Path Estimates
▶ B-F and Dijkstra’s keep track of the shortest
paths found so far; we call these the estimated
shortest paths.

▶ For each node 𝑢, remember 𝑢’s:
▶ predecessor in estimated shortest path;
▶ distance from source 𝑠 in estimated shortest path.

▶ Key: estimated distance will always be ≥ actual
distance.

Updates
▶ Both algorithms work by iteratively updating
their estimates.

▶ On each iteration, consider a new edge (𝑢, 𝑣).
Ask: is the best known shortest path from

source → ⋯ → 𝑢 → 𝑣
shorter than the best known shortest path from

source → ⋯ → predecessor[v] → 𝑣?

▶ If it is, we have discovered a shorter path to 𝑣.

Example: Updating (𝑢2, 𝑣):

Example: Updating (𝑢2, 𝑣):

estimated length of 𝑠 → 𝑢2 → 𝑣
= (estimated length of 𝑠 → 𝑢2) + 𝜔(𝑢2, 𝑣)
= 4 + 2 = 6 < 10

Example: After Updating (𝑢2, 𝑣):

A shorter path has been found.

Updating, in Code
▶ Let:

▶ est be a dictionary of estimated shortest
path distances.

▶ predecessor be a dictionary of estimated
shortest path predecessors.

▶ weights be a function which returns edge
weights.

Updating, in Code

def update(u, v, weights, est, predecessor):
”””Update edge (u,v).”””
if est[v] > est[u] + weights(u,v):

est[v] = est[u] + weights(u,v)
predecessor[v] = u
return True

else:
return False

▶ Time complexity:

When does an update discover a
shortest path?

▶ Suppose updating (𝑢2, 𝑣) finds a shorter path to 𝑣.
▶ True or False: the actual shortest path must go through 𝑢2.

▶ False: we might later discover a better path to 𝑢1.

When does an update discover a
shortest path?

▶ Suppose updating (𝑢2, 𝑣) finds a shorter path to 𝑣.
▶ True or False: the actual shortest path must go through 𝑢2.▶ False: we might later discover a better path to 𝑢1.

When does an update discover the
shortest path?

▶ Let (𝑢, 𝑣) be an edge.

▶ Suppose:
▶ the actual shortest path to 𝑢 has been found;
▶ the actual shortest path to 𝑣 goes through (𝑢, 𝑣).

▶ Then after updating (𝑢, 𝑣), the estimated shortest
path to 𝑣 is correct.

Lecture 14 | Part 2

Bellman-Ford

Intuition
▶ Shortest paths that have many edges are
“harder” to discover.

▶ May require many updates.

▶ Shortest paths that have few edges are “easier”
to discover.

▶ Once we’ve discovered all of the shortest paths
with few edges, it makes it easier to discover the
shortest paths with more edges.

Updating All Edges

▶ Suppose we update all of the edges, one by one.

▶ Then all nodes whose shortest path from 𝑠 has
only one edge are guaranteed to be estimated
correctly.

Updating All Edges

▶ Suppose we update all of the edges again.

▶ Then all nodes whose shortest path from 𝑠 has
at most two edges are guaranteed to be
estimated correctly.

Loop Invariant
▶ One iteration: update all edges in arbitrary order.

▶ Loop invariant: After 𝛼 iterations, all nodes
whose shortest path from 𝑠 has ≤ 𝛼 edges are
guaranteed to be estimated correctly.

The Bellman-Ford Algorithm
def bellman_ford(graph, weights, source):

”””Assume graph is directed.”””
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
predecessor = {node: None for node in graph.nodes}

for i in range(?):
for (u, v) in graph.edges:

update(u, v, weights, est, predecessor)

return est, predecessor

Bellman-Ford
▶ Claim: each node must have a shortest path
which is simple1.

▶ The most edges a simple path can have is |𝑉| − 1

▶ Idea of Bellman-Ford: iteratively update all
edges, repeat |𝑉| − 1 times.

1Edge case: cycles of weight zero.

The Bellman-Ford Algorithm
def bellman_ford(graph, weights, source):

”””Assume graph is directed.”””
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
predecessor = {node: None for node in graph.nodes}

for i in range(len(graph.nodes) - 1):
for (u, v) in graph.edges:

update(u, v, weights, est, predecessor)

return est, predecessor

Example
Suppose graph.edges returns edges in following
order:

(𝑣3, 𝑣4), (𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣7, 𝑣6), (𝑣5, 𝑣7),
(𝑣7, 𝑣5), (𝑣4, 𝑣5), (𝑣5, 𝑣6), (𝑣1, 𝑣7)

Time Complexity
def bellman_ford(graph, weights, source):

”””Assume graph is directed.”””
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
predecessor = {node: None for node in graph.nodes}

for i in range(len(graph.nodes) - 1):
for (u, v) in graph.edges:

update(u, v, weights, est, predecessor)

return est, predecessor

▶ Setup: time
▶ Each update takes time
▶ There are exactly updates
▶ Total time complexity:

Lecture 14 | Part 3

Early Stopping and Negative Cycles

Early Stopping
▶ B-F may not need to run for |𝑉 | − 1 iterations.

▶ If no predecessors change, we can break:

def bellman_ford(graph, weights, source):
”””Early stopping version.”””
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
predecessor = {node: None for node in graph.nodes}

for i in range(len(graph.nodes) - 1):
any_changes = False
for (u, v) in graph.edges:

changed = update(u, v, weights, est, predecessor)
any_changes = changed or any_changes

if not any_changes:
break

return est, predecessor

Negative Cycles
▶ A negative cycle is a cycle whose total edge
weight is negative:

▶ If a graph has a negative cycle, (some) shortest
paths are not well defined.

Detecting Negative Cycles
▶ If graph does not have negative cycles,
estimated distances eventually stop changing
(after at most |𝑉 | − 1 iterations).

▶ If graph has negative cycles, estimated distances
always decrease.

▶ To detect them: run a |𝑉 |th iteration; if
distances change, a negative cycle exists.

Detecting Negative Cycles

def bellman_ford(graph, weights, source):
”””Early stopping version, detects negative cycles.”””
est = {node: float('inf') for node in graph.nodes}
est[source] = 0
predecessor = {node: None for node in graph.nodes}

for i in range(len(graph.nodes)):
any_changes = False
for (u, v) in graph.edges:

changed = update(u, v, weights, est, predecessor)
any_changes = changed or any_changes

if not any_changes:
break

this will be True if negative cycles exist
contains_negative_cycles = any_changes
return est, predecessor, contains_negative_cycles

