
Lecture 15 | Part 1

Dijkstra’s Algorithm

Shortest Path Algorithms▶ Bellman-Ford and Dijkstra’s are shortest path
algorithms:

INPUT: weighted graph, source vertex 𝑠.
OUTPUT: shortest paths from 𝑠 to every other node.▶ Both work by:▶ keeping estimates of shortest path distances;▶ iteratively updating estimates until they’re correct.

Shortest Path Algorithms▶ We saw Bellman-Ford last time; takes time Θ(𝑉𝐸).▶ Dijkstra’s will be faster, but can’t handle negative
weights.

(v+ V. E)

Dijkstra’s Algorithm▶ On every iteration, Bellman-Ford updates all
edges – many don’t need to be updated.▶ If we assume all edge weights are positive, we
can rule out some paths immediately:

2

3
2

S

Dijkstra’s Idea▶ Keep track of set 𝐶 of “correct” nodes.▶ Nodes whose distance estimate is correct.▶ At every step, add node outside of 𝐶 with
smallest estimated distance; update only its
neighbors.▶ A “greedy” algorithm.

Outline of Dijkstra’s Algorithm
def dijkstra(graph, weights, source):

est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

empty set
C = set()

while there are nodes still outside of C
find node u outside of C with smallest
estimated distance
C.add(u)
for v in graph.neighbors(u):

update(u, v, weights, est, pred)

return est, pred

Example
c = 25 , , Uz : z > up] 2

S
I 4

3

Proof Idea▶ Claim: at beginning of any iteration of Dijkstra’s, if 𝑢 is
node ∉ 𝐶 with smallest estimated distance, the shortest
path to 𝑢 has been correctly discovered.

Proof Idea▶ Let 𝑢 be node outside of 𝐶 for which est[u] is smallest.▶ We’ve discovered a path from 𝑠 to 𝑢 of length est[u].▶ Any path from 𝑠 to 𝑢 has to exit 𝐶 somewhere.▶ Any path from 𝑠 to 𝑢 will cost at least est[u] just to exit 𝐶.

Exercise
Why do the edge weights need to be positive?
Come up with a simple example graph with some
negative edge weights where Dijkstra’s fails to
compute the correct shortest path.

Exercise
Why do the edge weights need to be positive?
Come up with a simple example graph with some
negative edge weights where Dijkstra’s fails to
compute the correct shortest path.

+
c = (S , 4, , Re s uz]S 2

->⑬ 7

Yo
-16

Lecture 15 | Part 2

Implementation

Outline of Dijkstra’s Algorithm
def dijkstra(graph, weights, source):

est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

empty set
C = set()

while there are nodes still outside of C
find node u outside of C with smallest
estimated distance
C.add(u)
for v in graph.neighbors(u):

update(u, v, weights, est, pred)

return est, pred

Dijkstra’s Algorithm: Naïve
Implementation

1 def dijkstra(graph, weights, source):
2 est = {node: float('inf') for node in graph.nodes}
3 est[source] = 0
4 pred = {node: None for node in graph.nodes}
5

6 outside = set(graph.nodes)
7

8 while outside:
9 # find smallest with linear search

10 u = min(outside, key=est)
11 outside.remove(u)
12 for v in graph.neighbors(u):
13 update(u, v, weights, est, pred)
14

15 return est, pred▶ Time complexity:

A(N1) ->

& (IV1) =>

-(t1[

Priority Queues▶ A priority queue allows us to store (key, value) pairs,
efficiently return key with lowest value.▶ Suppose we have a priority queue class:▶ PriorityQueue(priorities) will create a priority

queue from a dictionary whose values are priorities.▶ The .extract_min() method removes and returns
key with smallest value.▶ The .change_priority(key, value) method
changes key’s value.

-

Example
>>> pq = PriorityQueue({

'w': 5,
'x': 4,
'y': 1,
'z': 3

})
>>> pq.extract_min()
'y'
>>> pq.change_priority('w', 2)
>>> pq.extract_min()

in
- zi3']

'w'

Dijkstra’s Algorithm: Priority Queue
def dijkstra(graph, weights, source):

est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

priority_queue = PriorityQueue(est)
while priority_queue:

u = priority_queue.extract_min()
for v in graph.neighbors(u):

changed = update(u, v, weights, est, pred)
if changed:

priority_queue.change_priority(v, est[v])

return est, pred

Total : EIV. Tem +

E . Tcp)
EIV . Teml

- Tem

G (E . TcP) -> Top

Heaps▶ A priority queue can be implemented using a
heap.▶ If a binary min-heap is used:▶ PriorityQueue(est) takes Θ(𝑉) time.▶ .extract_min() takes 𝑂(log 𝑉) time.▶ .change_priority() takes 𝑂(log 𝑉) time.

0

-.

Time Complexity Using Min Heap
def dijkstra(graph, weights, source):

est = {node: float('inf') for node in graph.nodes}
est[source] = 0
pred = {node: None for node in graph.nodes}

priority_queue = PriorityQueue(est)
while priority_queue:

u = priority_queue.extract_min()
for v in graph.neighbors(u):

changed = update(u, v, weights, est, pred)
if changed:

priority_queue.change_priority(v, est[v])

return est, pred▶ Time complexity:

Ev)= by(r)
= Tem

EV + V . lagu+ E . ngr) - (agv)
E((E)logV) =

(WogV + E . logr)
"TCP

D

Lecture 15 | Part 3

Proof

Proof Idea▶ Claim: at beginning of any iteration of Dijkstra’s, if 𝑢 is
node ∉ 𝐶 with smallest estimated distance, the shortest
path to 𝑢 has been correctly discovered.

Proof Idea▶ Let 𝑢 be node outside of 𝐶 for which est[u] is smallest.▶ We’ve discovered a path from 𝑠 to 𝑢 of length est[u].▶ Any path from 𝑠 to 𝑢 has to exit 𝐶 somewhere.▶ Any path from 𝑠 to 𝑢 will cost at least est[u] just to exit 𝐶.

Exit Paths▶ An exit path from 𝑠 through 𝐶 is a path for which:▶ the first node is 𝑠;▶ the last node (a.k.a., the exit node) is not in 𝐶;▶ all other nodes are in 𝐶.▶ Example:

Exit Paths▶ True or False: this is an exit path from 𝑠 through 𝐶.

Exit Paths▶ True or False: this is an exit path from 𝑠 through 𝐶.
X

Path Decomposition▶ Any path from 𝑠 to a node 𝑢 outside of 𝐶 can be broken
into two parts:

(an exit path from 𝑠) + (path from exit node to 𝑢)

30

Path Decomposition▶ Consider any path from 𝑠 to 𝑢 ∉ 𝐶.▶ Suppose 𝑒 is the path’s exit node.▶ We have:
(length of the path)= (length of exit path to 𝑒) + (length of path from 𝑒 to 𝑢)≥ (length of shortest exit path to 𝑒) + (length of path from 𝑒 to 𝑢)▶ Since edge weights are positive, all path lengths ≥ 0:≥ (length of shortest exit path to 𝑒) + 0

Shortest Exit Paths▶ Example: What is the shortest exit path with exit node 𝑢3?

▶ If 𝑢 is outside of 𝐶, then the length of the shortest exit
path with exit node 𝑒 is est[e].

Proof Idea▶ Suppose 𝑢 is a node outside of 𝐶 for which est[u] is
smallest.▶ Consider any path from 𝑠 to 𝑢, and let 𝑒 be the path’s exit
node.▶ We have:

(length of this path from 𝑠 to 𝑢)≥ (length of shortest exit path to 𝑒) + 0= est[e]≥ est[u]▶ That is, any path from 𝑠 to 𝑢 has length ≥ est[u].▶ We’ve already found one with length est[u]; this proves
that it is the shortest.

