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Dijkstra’s Algorithm



Shortest Path Algorithms

Bellman-Ford and Dijkstra’s are shortest path
algorithms:

INPUT: weighted graph, source vertex s.
OUTPUT: shortest paths from s to every other node.

Both work by:
keeping estimates of shortest path distances;
iteratively updating estimates until they're correct.



Shortest Path Algorithms
e(v+ VE)
We saw Bellman-Ford last time; takes time ©(VE).

Dijkstra’s will be faster, but can’'t handle negative
weights.



Dijkstra’s Algorithm

On every iteration, Bellman-Ford updates all
edges — many don’t need to be updated.

If we assume all edge weights are positive, we
can rule out some paths immediately:
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Dijkstra’s Idea

Keep track of set C of “correct” nodes.
Nodes whose distance estimate is correct.

At every step, add node outside of C with

smallest estimated distance; update only its
neighbors.

A “greedy” algorithm.



Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = o
pred = {node: None for node in graph.nodes}

# empty set
C = set()

# while there are nodes still outside of C
# find node u outside of C with smallest
# estimated distance
C.add(u)
for v in graph.neighbors(u):
update(u, v, weights, est, pred)

return est, pred



Example

c={s,u,;u3,u2;u¢}
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Proof Idea

Claim: at beginning of any iteration of Dijkstra’s, if u is
node ¢ C with smallest estimated distance, the shortest
path to u has been correctly discovered.
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Proof Idea

Let u be node outside of C for which est[u] is smallest.
We've discovered a path from s to u of length est[u].

Any path from s to u has to exit C somewhere. .
Any path from s to u will cost at least est[u] just to exit C.
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Why do the edge weights need to be positive?
Come up with a simple example graph with some
negative edge weights where Dijkstra’s fails to
compute the correct shortest path.




Why do the edge weights need to be positive?
Come up with a simple example graph with some
negative edge weights where Dijkstra’s fails to
compute the correct shortest path.
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Outline of Dijkstra’s Algorithm

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = o
pred = {node: None for node in graph.nodes}

# empty set
C = set()

# while there are nodes still outside of C
# find node u outside of C with smallest
# estimated distance
C.add(u)
for v in graph.neighbors(u):
update(u, v, weights, est, pred)

return est, pred



Dijkstra’s Algorithm: Naive
Implementation

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}

est[source] = o
pred = {node: None for node in graph.nodes}

outside = set(graph.nodes)

(V) > while outside:
# find smallest with linear search

10 9(Ivl) - u = min(outside, key=est)
11 outside.remove(u)

12 for v in graph.neighbors(u):
o (el) update(u, v, weights, est, pred)

15 return est, pred



Priority Queues

A priority queue allows us to store (key, value) pairs,
efficiently return key with lowest value.

Suppose we have a priority queue class:
riorityQueue(priorities) will create a priority
queue from a dictionary whose values are priorities.

The .extract_min() method removes and returns
key with smallest value.

The .change_priority(key, value) method
changes key’s value.
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Example

PriorityQueue({

. 5,
D4,

'ul".51
X/,‘q')
2 ;3}

pq.change_priority('w', 2)
pg.extract_min()
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Dijkstra’s Algorithm: Priority Queue

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = o

pred = {node: None for node in graph.nodes} Dfa&/' 6(\/ Tc’m +

priority_queue = PriorityQueue(est) E.-T ‘)
while priority_queue: ¢
63( V. T ) u = priority_queue.extract_min() —» _Eem
em for v in graph.neighbors(u):
changed = update(u, v, weights, est, pred)
if changed: T
e ( E.Tcp) priority_queue.change_priority(v, est[v]) —> (P

return est, pred



Heaps C{@\
A priority queue can be implemented using a O
heap.
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If a binary min-heap is used:
PriorityQueue(est) takes O(V tlmeg

.extract_min() takes ©(logV) timeé{ O

.change_priority() takes 8(logV) time.



Time Complexity Using Min Heap

def dijkstra(graph, weights, source):
est = {node: float('inf') for node in graph.nodes}
est[source] = o
pred = {node: None for node in graph.nodes}

és(fv & priority_queue = PriorityQueue(est)

while priority_queue: 6 ( k’a,(V})
for v in graph.neighbors(u):

changed = update(u, v, weights, est, pred)

if] changed:
priority_queue (change_priority(v, est[v
of-4v)

return est, pred ~
6( (V-\-E)l*a\/)t
Time complexify: © k\r'%v + £ \og V)
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Proof Idea

Claim: at beginning of any iteration of Dijkstra’s, if u is
node ¢ C with smallest estimated distance, the shortest
path to u has been correctly discovered.
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Proof Idea

Let u be node outside of C for which est[u] is smallest.
We've discovered a path from s to u of length est[u].

Any path from s to u has to exit C somewhere. .
Any path from s to u will cost at least est[u] just to exit C.
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Exit Paths

An exit path from s through C is a path for which:
the first node is s;
the last node (a.k.a., the exit node) is not in C;
all other nodes are in C.

Example:



Exit Paths

True or False: this is an exit path from s through C.
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Exit Paths

True or False: this is an exit path from s through C.
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Path Decomposition

Any path from s to a node u outside of C can be broken
into two parts:

(an exit path from s) + (path from exit node to u)
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Path Decomposition
Consider any path from s to u ¢ C.
Suppose e is the path’s exit node.

We have:
(length of the path)
= (length of exit path to e) + (length of path from e to u)
> (length of shortest exit path to e) + (length of path from e to u)

Since edge weights are positive, all path lengths = 0:

> (length of shortest exit path to e) + 0



Shortest Exit Paths

Example: What is the shortest exit path with exit node u,?
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If u is outside of C, then the length of the shortest exit
path with exit node eis est[e].



Proof Idea

Suppose u is a node outside of C for which est[u] is
smallest.

Consider any path from s to u, and let e be the path’s exit
node.

We have:

(length of this path from s to u)

> (length of shortest exit path to e) + 0
=estle]

2estlu]

That is, any path from s to u has length 2 est[u].

We've already found one with length est[u]; this proves
that it is the shortest.



