DSC 40B Theoretical Foundations II

Lecture 15 | Part 1

Dijkstra's Algorithm

Shortest Path Algorithms

Bellman-Ford and Dijkstra's are shortest path algorithms:

INPUT: weighted graph, source vertex s. OUTPUT: shortest paths from s to every other node.

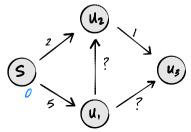
- Both work by:
 - keeping estimates of shortest path distances;
 - iteratively updating estimates until they're correct.

Shortest Path Algorithms

- We saw Bellman-Ford last time; takes time Θ(VE).
- Dijkstra's will be faster, but can't handle negative weights.

Dijkstra's Algorithm

- On every iteration, Bellman-Ford updates all edges – many don't need to be updated.
- If we assume all edge weights are positive, we can rule out some paths immediately:



Dijkstra's Idea

Keep track of set C of "correct" nodes.
 Nodes whose distance estimate is correct.

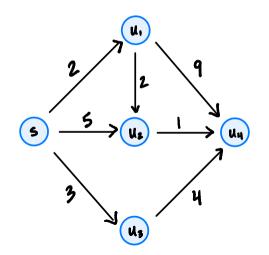
At every step, add node outside of C with smallest estimated distance; update only its neighbors.

A "greedy" algorithm.

Outline of Dijkstra's Algorithm

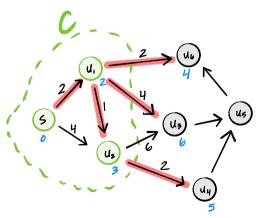
```
def dijkstra(graph, weights, source):
    est = {node: float('inf') for node in graph.nodes}
    est[source] = \odot
    pred = {node: None for node in graph.nodes}
    # empty set
    C = set()
    # while there are nodes still outside of C
        # find node u outside of C with smallest
        # estimated distance
        C_add(u)
        for v in graph.neighbors(u):
            update(u, v, weights, est, pred)
    return est, pred
```

Example



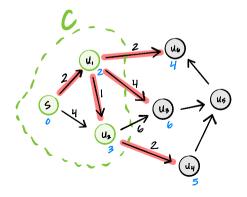
Proof Idea

Claim: at beginning of any iteration of Dijkstra's, if u is node ∉ C with smallest estimated distance, the shortest path to u has been correctly discovered.



Proof Idea

- Let u be node outside of C for which est[u] is smallest.
- We've discovered a path from s to u of length est[u].
- Any path from s to u has to exit C somewhere.
- Any path from s to u will cost at least est[u] just to exit C.



Exercise

Why do the edge weights need to be positive? Come up with a simple example graph with some negative edge weights where Dijkstra's fails to compute the correct shortest path.

DSC 40B Theoretical Foundations II

Lecture 15 | Part 2

Implementation

Outline of Dijkstra's Algorithm

```
def dijkstra(graph, weights, source):
    est = {node: float('inf') for node in graph.nodes}
    est[source] = ⊙
    pred = {node: None for node in graph.nodes}
    # empty set
    C = set()
    # while there are nodes still outside of C
        # find node u outside of C with smallest
        # estimated distance
        C_add(u)
        for v in graph.neighbors(u):
            update(u, v, weights, est, pred)
```

return est, pred

Dijkstra's Algorithm: Naïve Implementation

```
def dijkstra(graph, weights, source):
1
       est = {node: float('inf') for node in graph.nodes}
2
       est[source] = ⊙
3
       pred = {node: None for node in graph.nodes}
4
5
       outside = set(graph.nodes)
6
7
       while outside:
8
            # find smallest with linear search
9
            u = min(outside, key=est)
10
            outside.remove(u)
11
            for v in graph.neighbors(u):
12
                update(u. v. weights, est, pred)
13
14
       return est, pred
15
```

Priority Queues

- A priority queue allows us to store (key, value) pairs, efficiently return key with lowest value.
- Suppose we have a priority queue class:
 - PriorityQueue(priorities) will create a priority queue from a dictionary whose values are priorities.
 - The .extract_min() method removes and returns key with smallest value.
 - The .change_priority(key, value) method changes key's value.

Example

>>> pq = PriorityQueue({ 'w': 5, 'x': 4, 'V': 1. '7': 3 }) >>> pg.extract min() 'v' >>> pq.change_priority('w', 2) >>> pg.extract min()

Dijkstra's Algorithm: Priority Queue

```
def dijkstra(graph, weights, source):
    est = {node: float('inf') for node in graph.nodes}
    est[source] = ⊙
    pred = {node: None for node in graph.nodes}
    priority_queue = PriorityQueue(est)
    while priority queue:
        u = priority gueue.extract min()
        for v in graph.neighbors(u):
            changed = update(u. v. weights. est. pred)
            if changed:
                priority_queue.change_priority(v, est[v])
```

return est, pred

Heaps

- A priority queue can be implemented using a heap.
- ▶ If a binary min-heap is used:
 ▶ PriorityQueue(est) takes Θ(V) time.
 - .extract_min() takes O(log V) time.
 - .change_priority() takes O(log V) time.

Time Complexity Using Min Heap

```
def dijkstra(graph, weights, source):
    est = {node: float('inf') for node in graph.nodes}
    est[source] = \odot
    pred = {node: None for node in graph.nodes}
    priority queue = PriorityQueue(est)
    while priority queue:
        u = priority queue.extract min()
        for v in graph.neighbors(u):
            changed = update(u, v, weights, est, pred)
            if changed:
                priority queue change priority(v. est[v])
```

return est, pred

Time complexity: _____

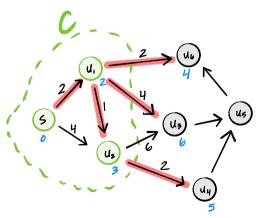
DSC 40B Theoretical Foundations II

Lecture 15 | Part 3

Proof

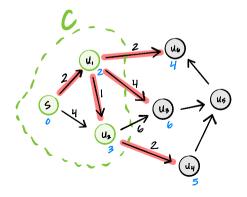
Proof Idea

Claim: at beginning of any iteration of Dijkstra's, if u is node ∉ C with smallest estimated distance, the shortest path to u has been correctly discovered.



Proof Idea

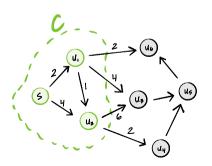
- Let u be node outside of C for which est[u] is smallest.
- We've discovered a path from s to u of length est[u].
- Any path from s to u has to exit C somewhere.
- Any path from s to u will cost at least est[u] just to exit C.



Exit Paths

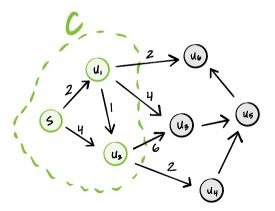
- An exit path from s through C is a path for which:
 - the first node is s:
 - the last node (a.k.a., the exit node) is not in C;
 all other nodes are in C.

Example:



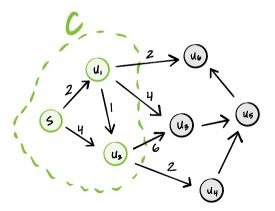
Exit Paths

True or False: this is an exit path from s through C.



Exit Paths

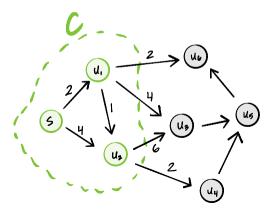
True or False: this is an exit path from s through C.



Path Decomposition

Any path from s to a node u outside of C can be broken into two parts:

(an exit path from s) + (path from exit node to u)



Path Decomposition

- Consider any path from s to $u \notin C$.
- Suppose *e* is the path's exit node.

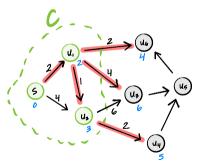
We have:

(length of the path)

- = (length of exit path to *e*) + (length of path from *e* to *u*)
- \geq (length of shortest exit path to e) + (length of path from e to u)
- Since edge weights are positive, all path lengths \geq 0:
 - \geq (length of shortest exit path to e) + 0

Shortest Exit Paths

Example: What is the shortest exit path with exit node u_3 ?



If u is outside of C, then the length of the shortest exit path with exit node e is est[e].

Proof Idea

- Suppose u is a node outside of C for which est[u] is smallest.
- Consider any path from s to u, and let e be the path's exit node.

We have:

```
(length of this path from s to u)
≥ (length of shortest exit path to e) + 0
= est[e]
≥ est[u]
```

- ▶ That is, any path from s to u has length \ge est[u].
- We've already found one with length est[u]; this proves that it is the shortest.