
Lecture 16 | Part 1

Minimum Spanning Trees

Today’s Problem

▶ Choose a set of dirt roads to pave so that:▶ can get between any two buildings only on paved
roads;▶ total cost is minimized.▶ Solution: compute a minimum spanning tree.

Today’s Problem

▶ Choose a set of dirt roads to pave so that:▶ can get between any two buildings only on paved
roads;▶ total cost is minimized.▶ Solution: compute a minimum spanning tree.

Trees
An undirected graph 𝑇 = (𝑉, 𝐸) is a tree if▶ it is connected; and▶ it is acyclic.

Example: a tree.

Trees
An undirected graph 𝑇 = (𝑉, 𝐸) is a tree if▶ it is connected; and▶ it is acyclic.

Example: a tree.

Trees
An undirected graph 𝑇 = (𝑉, 𝐸) is a tree if▶ it is connected; and▶ it is acyclic.

Example: not a tree.

Trees
An undirected graph 𝑇 = (𝑉, 𝐸) is a tree if▶ it is connected; and▶ it is acyclic.

Example: not a tree.

Trees: Equivalent Definition
An undirected graph 𝑇 = (𝑉, 𝐸) is a tree if▶ it is connected; and▶ |𝐸| = |𝑉| − 1.

Example: a tree.

Trees: Equivalent Definition
An undirected graph 𝑇 = (𝑉, 𝐸) is a tree if▶ it is connected; and▶ |𝐸| = |𝑉| − 1.

Example: a tree.

Trees: Equivalent Definition
An undirected graph 𝑇 = (𝑉, 𝐸) is a tree if▶ it is connected; and▶ |𝐸| = |𝑉| − 1.

Example: not a tree.

Trees: Equivalent Definition
An undirected graph 𝑇 = (𝑉, 𝐸) is a tree if▶ it is connected; and▶ |𝐸| = |𝑉| − 1.

Example: not a tree.

Tree Properties

▶ There is a unique simple path between
any two nodes in a tree.▶ Adding a new edge to a tree creates a
cycle (no longer a tree).▶ Removing an edge from a tree
disconnects it (no longer a tree).

S

&

S

Spanning Trees
Let 𝐺 = (𝑉, 𝐸) be a connected graph. A spanning tree of 𝐺 is a
tree 𝑇 = (𝑉, 𝐸𝑇) with the same nodes as 𝐺, and a subset of 𝐺′𝑠
edges.

Many Spanning Trees
The same graph can have many spanning trees.

Spanning Tree Cost
If 𝐺 = (𝑉, 𝐸,𝜔) is a weighted undirected graph, the cost (or
weight) of a spanning tree is the total weight of the edges in the
spanning tree.

Cost: 4 + 2 + 8 + 7 + 3 + 5 + 16 + 17 + 6 = ?

Spanning Tree Cost
Different spanning trees of the same graph can have different
costs.

Cost: 9 + 1 + 10 + 8 + 12 + 13 + 14 + 16 + 15 =

Minimum Spanning Tree▶ The minimum spanning tree problem is as follows:▶ GIVEN: A weighted, undirected graph 𝐺 = (𝑉, 𝐸,𝜔).▶ COMPUTE: a spanning tree of 𝐺 with minimum cost
(i.e., minimum total edge weight).▶ For a given graph, the MST may not be unique.

Exercise

Suppose the edges of a graph 𝐺 = (𝑉, 𝑒,𝜔) all have
the same weight. How can we compute an MST of
the graph?

E
&

-
cost of any MST is (IVI + 1) . W.

-
BFS or DFS

Today’s Problem

▶ Choose a set of dirt roads to pave so that:▶ can get between any two buildings only on paved
roads;▶ total cost is minimized.▶ Solution: compute a minimum spanning tree.

MSTs in Data Science?▶ Do we need to find MSTs in data science?▶ Actually, yes! (Next lecture)

Lecture 16 | Part 2

Prim’s Algorithm

Building MSTs▶ How do we build a MST efficiently?▶ We’ll adopt a greedy approach.▶ Build a tree edge-by-edge.▶ At every step, doing what looks best at the moment.▶ This strategy isn’t guaranteed to work in all of life’s
situations, but it works for building MSTs.

Two Greedy Approaches▶ We’ll look at two greedy algorithms:▶ Today: Prim’s Algorithm▶ Next time: Kruskal’s Algorithm▶ Differ in the order in which edges are added to tree.▶ Also differ in time complexity.

Prim’s Algorithm, Informally
▶ Start by picking any node to add to
“tree”, 𝑇 .▶ While 𝑇 is not a spanning tree, greedily
add lightest edge from a node in 𝑇 to a
node not in 𝑇 .▶ “lightest” = edge of smallest

weight

▶ Is this guaranteed to work? Yes, as we’ll
see.

·

Prim’s Algorithm, Informally
▶ Start by picking any node to add to
“tree”, 𝑇 .▶ While 𝑇 is not a spanning tree, greedily
add lightest edge from a node in 𝑇 to a
node not in 𝑇 .▶ “lightest” = edge of smallest

weight▶ Is this guaranteed to work? Yes, as we’ll
see.

Prim’s Algorithm, Equivalently▶ For each node 𝑢, store:▶ estimated cost of adding node to tree;▶ estimated “predecessor” 𝑣 in the tree.▶ At each step,▶ Find node with smallest estimated cost.▶ Add to tree 𝑇 by including edge with estimated
“predecessor”.▶ Update cost of neighbors.▶ Same as adding lightest edge from 𝑇 to outside 𝑇 at every

step!

Prim’s Algorithm, Equivalently

▶ While 𝑇 is not a tree:▶ find the node 𝑢 ∉ 𝑇 with smallest
cost▶ add the edge between 𝑢 and its
estimated “predecessor” to 𝑇▶ update estimated cost/pred. of𝑢’s neighbors which aren’t
already in tree.

I

spanning

·:ot
-A

T. ·g*

Recall: Priority Queues▶ How do we efficiently find node with smallest cost?▶ Priority Queues:▶ PriorityQueue(priorities): creates priority queue from
dictionary whose values are priorities.▶ .extract_min(): removes and returns key with smallest value.▶ .decrease_priority(key, value): changes key’s value.▶ We’ll use a priority queue to hold nodes not yet added to

tree.

->

def prim(graph, weight):
tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

Prim and Dijkstra▶ This is a lot like Dijkstra’s Algorithm for s.p.d.!▶ Both: at each step, extract node with smallest cost, update
its edges. (Prim: only those edges to nodes not in tree).▶ Dijkstra update of (𝑢, 𝑣):
cost[v] = min(cost[v], cost[u] + weight(u, v))▶ Prim update of (𝑢, 𝑣):

cost[v] = min(cost[v], weight(u, v))

Lecture 16 | Part 3

Time Complexity

Time Complexity▶ A priority queue can be implemented using a heap.▶ If a binary min-heap is used:▶ PriorityQueue(est) takes Θ(𝑉) time.▶ .extract_min() takes 𝑂(log 𝑉) time.▶ .decrease_priority() takes 𝑂(log 𝑉) time.-

Time Complexity
def prim(graph, weight):

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

fr)

& (vg1-> -
- -(ogv)

-

/Elev- -
↳ (legv)

Time Complexity▶ Using a binary heap...▶ Overall: Θ(𝑉 log 𝑉 + 𝐸 log 𝑉).▶ Since graph is assumed connected, 𝐸 = Ω(𝑉).▶ So this simplifies to Θ(𝐸 log 𝑉).

Fibonacci Heaps▶ A priority queue can be implemented using a heap.▶ If a Fibonacci min-heap is used:▶ PriorityQueue(est) takes Θ(𝑉) time.▶ .extract_min() takes Θ(log 𝑉) time1.▶ .decrease_priority() takes 𝑂(1) time.
1Amortized.

Time Complexity
def prim(graph, weight):

tree = UndirectedGraph()

estimated_predecessor = {node: None for node in graph.nodes}
cost = {node: float('inf') for node in graph.nodes}
priority_queue = PriorityQueue(cost)

while priority_queue:
u = priority_queue.extract_min()
if estimated_predecessor[u] is not None:

tree.add_edge(estimated_predecessor[u], u)
for v in graph.neighbors(u):

if weight(u, v) < cost[v] and v not in tree.nodes:
priority_queue.decrease_priority(v, weight(u, v))
cost[v] = weight(u, v)
estimated_predecessor[v] = u

return tree

E(V) -

- Flagv)

-o

Time Complexity▶ Using a Fibonacci heap...▶ Overall: Θ(𝑉 log 𝑉 + 𝐸).

Fibonacci vs. Binary Heaps▶ Using Fibonacci heaps improves time complexity when
graph is dense.▶ E.g., if 𝐸 = Θ(𝑉2):▶ Prim’s with Fibonacci: Θ(𝐸) = Θ(𝑉2)▶ Prim’s with binary: Θ(𝐸 log 𝐸) = Θ(𝑉2 log 𝑉).▶ But Fibonacci heaps are hard to implement; have large
constants.▶ Binary heaps used more in practice despite complexity.

->
f(vegV +) + (V

↳ evigogr) -> E(vlgV)

Lecture 16 | Part 4

Correctness of Prim’s Algorithm

Being Greedy▶ At every step, we add the lightest edge.▶ Is this “safe”?

▶ Yes! This is guaranteed to find an MST.

Being Greedy▶ At every step, we add the lightest edge.▶ Is this “safe”?▶ Yes! This is guaranteed to find an MST.

Promising Subtrees

𝑎
𝑏

𝑐
𝑑

𝑒
𝑓5

3

7
2

4

1
8

▶ Let 𝐺 = (𝑉, 𝐸,𝜔) be a weighted graph.▶ A subgraph 𝑇′ = (𝑉′, 𝐸′) is promising if it
is “part” of some MST.▶ That is, it is an “MST in progress”▶ Not necessarily a tree!▶ That is, there exists an MST 𝑇 = (𝑉, 𝐸mst)
such that 𝐸′ ⊂ 𝐸mst.▶ Hint: a “promising subtree” where𝑉′ = 𝑉 is an MST!

Main Idea
Prim’s starts with a promising subtree 𝑇 . At each step, adds
lightest edge from a node within 𝑇 to a node outside of 𝑇 .
We’ll show each new edge results in a larger promising sub-
tree. Eventually the promising subtree becomes a full MST.

Claim

𝑎
𝑏

𝑐
𝑑

𝑒
𝑓5

3

7
2

4

1
8

▶ Let 𝐺 = (𝑉, 𝐸,𝜔) be a weighted graph.▶ Suppose 𝑇′ = (𝑉′, 𝐸′) is a promising
subtree for an MST of 𝐺.▶ Let 𝑒 = (𝑢, 𝑣) be a lightest edge from a
node in 𝑇′ to a node outside of 𝑇′.
(Prim).▶ Then adding (𝑢, 𝑣) to 𝑇′ results in
another promising subtree.

Proof

𝑎
𝑏

𝑐
𝑑

𝑒
𝑓5

3

7
2

4

1
8

▶ Suppose 𝑇mst is an MST that includes 𝑇′.▶ If 𝑇mst includes 𝑒, we’re done: 𝑇′ + 𝑒 is
promising.▶ If it doesn’t include 𝑒, it must have an
edge 𝑓 that connects 𝑇′ to rest of the
graph.▶ Swap 𝑓 with 𝑒 in 𝑇mst. The result is a
tree, and it must be a MST since𝜔(𝑒) ≤ 𝜔(𝑓).▶ So there is an MST that contains 𝑇′ + 𝑒.

