
Lecture 17 | Part 1

Kruskal’s Algorithm

Last Time: Minimum Spanning Tree▶ The minimum spanning tree problem is as
follows:▶ GIVEN: A weighted, undirected graph𝐺 = (𝑉, 𝐸,𝜔).▶ COMPUTE: a spanning tree of 𝐺 with minimum

cost (i.e., minimum total edge weight).

Example

·b to

Last Time: Building MSTs▶ How do we build a MST efficiently?▶ We’ll adopt a greedy approach.▶ Build a tree edge-by-edge.▶ At every step, doing what looks best at the moment.▶ This strategy isn’t guaranteed to work in all of
life’s situations, but it works for building MSTs.

Two Greedy Approaches▶ We’ll look at two greedy algorithms:▶ Last Time: Prim’s Algorithm▶ Today: Kruskal’s Algorithm▶ Differ in the order in which edges are added to
tree.▶ Also differ in time complexity.

Prim’s Algorithm, Informally

▶ Start by picking any node to add to
“tree”, 𝑇 .▶ While 𝑇 is not a spanning tree, greedily
add lightest edge from a node in 𝑇 to a
node not in 𝑇 .▶ “lightest” = edge of smallest

weight·

Kruskal’s Algorithm, Informally

▶ Start with empty forest: 𝑇 = (𝑉, 𝐸mst),
where 𝐸mst = ∅.▶ Loop through edges in increasing order
of weight.▶ If edge does not create a cycle in𝑇 , add it to 𝑇 .▶ If 𝑇 is a spanning tree, break.
· =>%
· ↑&

o

Being Greedy▶ Prim: add the node with smallest estimated cost
and update neighbors.▶ Works locally, “grows” a connected tree.▶ Kruskal: add the edge with smallest weight.▶ As long as it doesn’t make a cycle.▶ Edge can be anywhere in graph.

Kruskal’s Algorithm (Pseudocode)
def kruskal(graph, weights):

mst = UndirectedGraph()

sort edges in ascending order by weight
sorted_edges = sorted(graph.edges, key=weights)

for (u, v) in sorted_edges:
if u and v are not already connected
if ...:

mst.add_edge(u, v)

(optional) if mst is now a spanning tree, break
if len(mst.edges) == len(graph.nodes) - 1:

break

return mst

-i

Checking for Connectivity▶ Each iteration: check if 𝑢 and 𝑣 are connected in𝑇 = (𝑉, 𝐸mst).▶ We could do a DFS/BFS on each iteration...▶ Θ(𝑉 + 𝐸mst) = Θ(𝑉) each time.▶ Expensive!▶ Remember:▶ If you’re computing something once, use a fast
algorithm.▶ If you’re computing it repeatedly, consider a data
structure.

Disjoint Set Forests▶ Represent a collection of disjoint sets.{{1, 5, 6}, {2, 3}, {0}, {4}}▶ .union(x, y): Union the sets containing 𝑥 and𝑦.▶ .in_same_set(x, y): Return True/False if 𝑥
and 𝑦 are in the same set.1

1Usually implemented as a .find(x) method returning representative of
set containing x.

-

Example
>>> # create a DSF with {{0}, {1}, {2}, {3}, {4}, {5}}
>>> dsf = DisjointSetForest([0, 1, 2, 3, 4, 5])
>>> dsf.union(0, 3)
>>> dsf.union(1, 4)
>>> dsf.union(3, 1)
>>> dsf.union(2, 5)
>>> # dsf now represents {{0, 1, 3, 4}, {2, 5}}
>>> dsf.in_same_set(0, 3)
True
>>> dsf.in_same_set(0, 2)
False

-> 440 , 33 , 513 . 423 , 443 : 4533
↳> 550 . 37 : 4143 , 22352533

440 , 3 , 1 ,4794234937

Disjoint Set Forests▶ Operations take Θ(𝛼(𝑛)) time, where 𝑛 is number
of objects in collection.▶ 𝛼(𝑛) is the inverse Ackermann function.▶ It grows very, very slowly.▶ Essentially constant time.

Disjoint Set Forests▶ Can be used to keep track of CCs of a dynamic
graph.▶ Nodes of CCs are disjoint sets.▶ Add an edge (𝑢, 𝑣): .union(u, v)▶ Check if 𝑢 and 𝑣 are connected:

.in_same_set(u, v)▶ To check if 𝑢, 𝑣 are already connected:▶ BFS/DFS: Θ(𝑉) each time.▶ DSF: Θ(𝛼(𝑉)) each time (essentially Θ(1)).

setz

z·& iY ··~

Kruskal’s Algorithm
def kruskal(graph, weights):

mst = UndirectedGraph()

place each node in its own disjoint set
components = DisjointSetForest(graph.nodes)

sort edges in ascending order by weight
sorted_edges = sorted(graph.edges, key=weights)

for (u, v) in sorted_edges:
if not components.in_same_set(u, v):

mst.add_edge(u, v)
components.union(u, v)

(optional) if mst is now a spanning tree, break
if len(mst.edges) == len(graph.nodes) - 1:

break

return mst

5903 : /17 : &23. 44 - 137

Time Complexity
def kruskal(graph, weights):

mst = UndirectedGraph()

place each node in its own disjoint set
components = DisjointSetForest(graph.nodes)

sort edges in ascending order by weight
sorted_edges = sorted(graph.edges, key=weights)

for (u, v) in sorted_edges:
if not components.in_same_set(u, v):

mst.add_edge(u, v)
components.union(u, v)

(optional) if mst is now a spanning tree, break
if len(mst.edges) == len(graph.nodes) - 1:

break

return mst

f(v) + A (flogE)
+ &(1) . E

A(V) =

= f(v) + (ElayE)
ElElegE) + f(t) = b(flog()

-
- o(l)

- -(1)e(
- &(1)

= O(l)

Time Complexity▶ Assume graph is connected. Then 𝐸 = Ω(𝑉).▶ Kruskal’s takes Θ(𝐸 log 𝐸) = Θ(𝐸 log 𝑉) time.▶ Dominated by sorting the edges.▶ Note: if graph disconnected, Kruskal’s produces
a minimum spanning forest.

Lecture 17 | Part 2

Kruskal v. Prim

Kruskal v. Prim▶ Both algorithms for computing MSTs.▶ Which is “better”?▶ There’s no clear winner.

Time Complexity▶ Prim:▶ Binary heap: Θ(𝑉 log 𝑉 + 𝐸 log 𝑉)▶ Fibonacci heap: Θ(𝑉 log 𝑉 + 𝐸)▶ Kruskal: Θ(𝐸 log 𝑉)▶ If the graph is dense, 𝐸 = Θ(𝑉2), and Prim’s with
Fibonacci heap “wins”.▶ Θ(𝑉2) versus Θ(𝑉2 log 𝑉).

-

elings-
* (Vegu +v = +(v)

Not so fast...▶ Fibonacci heaps are hard to implement, high
overhead.▶ Prim’s will be faster for very large dense graphs.▶ But Kruskal’s may be faster for smaller dense
graphs.▶ The right choice depends on your application.

Main Idea
Asymptotic time complexity isn’t everything. For
small inputs, the “inefficient” algorithm may beat
the “efficient” one. There’s also ease of implemen-
tation to consider.

Lecture 17 | Part 3

MSTs and Clustering

Clustering
Goal: identify the groups in data. Example:

⑳

Clustering, Formalized▶ We frame as an optimization problem.▶ GIVEN: 𝑛 data points.▶ GOAL: assign color to each point (red or blue) to
maximize the distance between the closest pair of
red and blue points.

Bad Clustering

Clustering, Formalized▶ We frame as an optimization problem.▶ GIVEN: 𝑛 data points.▶ GOAL: assign color to each point (red or blue) to
maximize the distance between the closest pair of
red and blue points.

Good Clustering

Brute Force Solution▶ Try all possible assignments; return best.▶ If there are 𝑛 data points, there are Θ(2𝑛)
assignments.▶ Exponential time; very slow. Practical only for∼ 50 data points.▶ Instead, we will turn it into a graph problem.

Distance Graphs▶ Given 𝑛 data points, 𝑝1, 𝑝2, … , 𝑝𝑛, create complete graph with𝑉 = {𝑝1, … , 𝑝𝑛}.▶ Set weight of edge (𝑝𝑖, 𝑝𝑗) = dist(𝑝𝑖, 𝑝𝑗).▶ The result is a weighted, undirected distance graph.

P= (X ,y) , Pz(X21Yz)
2dist(pp2l =Mix)+ 1y .
It

dist10Ps) :N+Tzl2
4

=E
3 I
2 ↓

5
I

f
I 2 S 4

Main Idea
We can always think of a set of points in a (met-
ric) space as a weighted distance graph. This is a
very important idea, because it allows us to use
our graph algorithms!

Clustering with MSTs▶ Given 𝑛 data points and a number of clusters, 𝑘:▶ Create distance graph 𝐺.▶ Run Kruskal’s Algorithm on 𝐺 until there are only 𝑘
components.

▶ The resulting connected components are the clusters.▶ This is known as single-linkage clustering.

Single-Linkage Clustering▶ Time complexity of single-linkage is determined
by Kruskal’s Algorithm: Θ(𝐸 log 𝐸).▶ Since distance graph is complete, 𝐸 = Θ(𝑉2), and
so Θ(𝐸 log 𝐸) = Θ(𝑉2 log 𝑉) = Θ(𝑛2 log 𝑛)▶ Practically, can cluster ∼ 10, 000 points.

Summary▶ We started the quarter with a brute force
solution.▶ Took Θ(2𝑛) time, only feasible for a few dozen points.▶ We’ve now reframed the problem using graph
theory.▶ Now only Θ(𝑛2 log 𝑛) time!▶ Feasible for tens of thousands of points.

Why Algorithms?▶ Data scientists use computers as tools.▶ But solving a problem isn’t just about coding it
up.▶ You need to know how to analyze your code and
use the right algorithms and data structures to
make your solution efficient.

