
Lecture 18 | Part 1

Complexity Theory



The quest for efficient algorithms is about
finding clever ways to avoid taking exponen-
tial time. So far we have seen the most bril-
liant successes of this quest; now we meet
the quest’s most embarrassing and persistent
failures.
- paraphrased from Algorithms by Dasgupta, Papadimitriou,

Vazirani



Exponential to Polynomial
▶ Many problems have brute force solutions which
take exponential time.

▶ Example: clustering to maximize separation

▶ The challenge of algorithm design: find a more
“efficient” solution.



Polynomial Time
▶ If an algorithm’s worst case time complexity is

𝑂(𝑛𝑘) for some 𝑘, we say that it runs in
polynomial time.

▶ Example: Θ(𝑛 log 𝑛), since 𝑛 log 𝑛 = 𝑂(𝑛2).

▶ Any polynomial is much faster than exponential
for big 𝑛.

▶ But not necessarily for small 𝑛.
▶ Example: 𝑛100 vs 1.0001𝑛.

▶ We therefore think of polynomial as “efficient”.



Question
▶ Is every problem solvable in polynomial time?

▶ No! Problem: print all permutations of 𝑛
numbers.

▶ No! Problem: given 𝑛 × 𝑛 checkerboard and
current pieces, determine if red can force a win.



Question
▶ Is every problem solvable in polynomial time?

▶ No! Problem: print all permutations of 𝑛
numbers.

▶ No! Problem: given 𝑛 × 𝑛 checkerboard and
current pieces, determine if red can force a win.



Question
▶ Is every problem solvable in polynomial time?

▶ No! Problem: print all permutations of 𝑛
numbers.

▶ No! Problem: given 𝑛 × 𝑛 checkerboard and
current pieces, determine if red can force a win.



Ok, then...
▶ What problems can be solved in polynomial
time?

▶ What problems can’t?

▶ How can I tell if I have a hard problem?

▶ Core questions in computational complexity
theory.



Ok, then...
▶ What problems can be solved in polynomial
time?

▶ What problems can’t?

▶ How can I tell if I have a hard problem?

▶ Core questions in computational complexity
theory.



Lecture 18 | Part 2

Eulerian and Hamiltonian Cycles



Example: Bridges of Königsberg

▶ Problem: Is it possible to start and end at same
point while crossing each bridge exactly once?



Leonhard Euler

1707 - 1783



Eulerian Cycle

Is there a cycle which uses each edge exactly once?



Necessary conditions
▶ Graph must be connected.

▶ Each node must have even degree.

▶ Answer for Königsberg answer: it is impossible.



In General...
▶ These conditions are necessary and sufficient.

▶ A graph has a Eulerian cycle if and only if :
▶ it is connected;
▶ each node has even degree.



Exercise
Can we determine if a graph has an Eulerian cycle
in time that is polynomial in the number of nodes?

Remember, an Eulerian cycle exists iff the graph is
connected and each node has even degree.



Answer
▶ We can check if it is connected in Θ(𝑉 + 𝐸) time.

▶ Compute every node’s degree in Θ(𝑉) time with
adjacency list.

▶ Total: Θ(𝑉 + 𝐸) = 𝑂(𝑉2). Yes!



Gaming in the 19th Century
I have found that some young persons have
been much amused by trying a new mathe-
matical game which the Icosian furnishes [...]

- W.R. Hamilton, 1856



Hamiltonian Cycles
▶ A Hamiltonian cycle is a cycle which visits each
node exactly once (except the starting node).

▶ Game: find a Hamiltonian cycle on the graph
below:



Exercise
Can we determine whether a general graph has a
Hamiltonian cycle in polynomial time?



Some cases are easy

1

2

3

4

5

6

7



In General
▶ Could brute-force.

▶ How many possible cycles are there?



Hamiltonian Cycles are Difficult
▶ This is a very difficult problem.

▶ No polynomial algorithm is known for general
graphs.

▶ In special cases, there may be a fast solution.
But in general, worst case is hard.



Note
▶ Determining if a graph has a Hamiltonian cycle is
hard.

▶ But if we’re given a “hint” (i.e., (𝑣1, 𝑣2, … , 𝑣𝑛) is
possibly a Hamiltonian cycle), we can check it
very quickly!

▶ Hard to solve; but easy to verify “hints”.



Similar Problems
▶ Eulerian: polynomial algorithm, “easy”.

▶ Hamiltonian: no polynomial algorithm known,
“hard”.



Main Idea
Computer science is littered with pairs of similar
problems where one easy and the other very hard.



Lecture 18 | Part 3

Shortest and Longest Paths



Problem: SHORTPATH
▶ Input: Graph1 𝐺, source 𝑢, dest. 𝑣, number 𝑘.

▶ Problem: is there a path from 𝑢 to 𝑣 of length
≤ 𝑘?

▶ Solution: BFS or Dijkstra/Bellman-Ford in
polynomial time.

▶ Easy!
1Weighted with no negative cycles, or unweighted.



Problem: LONGPATH
▶ Input: Graph2 𝐺, source 𝑢, dest. 𝑣, number 𝑘.

▶ Problem: is there a simple path from 𝑢 to 𝑣 of
length ≥ 𝑘?

▶ Naïve solution: try all 𝑉! path candidates.

2Weighted or unweighted.



Long Paths
▶ There is no known polynomial algorithm for this
problem.

▶ It is a hard problem.

▶ But given a “hint” (a possible long path), we can
verify it very quickly!



Lecture 18 | Part 4

Reductions



Reductions
▶ HAMILTONIAN and LONGPATH are related.

▶ We can “convert” HAMILTONIAN into LONGPATH in
polynomial time.

▶ We say that HAMILTONIAN reduces to LONGPATH.



Reduction
▶ Suppose we have an algorithm for LONGPATH.

▶ We can use it to solve HAMILTONIAN as follows:

𝑢

𝑣

▶ Pick arbitrary node 𝑢.
▶ For each neighbor 𝑣 of 𝑢:

▶ Create graph 𝐺′ by copying 𝐺, deleting
(𝑢, 𝑣)

▶ Use algorithm to check if a simple path
of length ≥ |𝑉| −1 from 𝑢 to 𝑣 exists in 𝐺′.

▶ If yes, then there is a Hamiltonian cycle.



Reductions
▶ If Problem A reduces3 to Problem B, it means “we
can solve A by solving B”.

▶ Best possible time for A ≤ best possible time for
B + polynomial

▶ “A is no harder than B”

▶ “B is at least as hard as A”
3We’ll assume reduction takes polynomial time.



Relative Difficulty
▶ If Problem 𝐴 reduces to Problem 𝐵, we say 𝐵 is at
least as hard as 𝐴.

▶ Example: HAMILTONIAN reduces to LONGPATH.
LONGPATH is at least as hard as HAMILTONIAN.



Lecture 18 | Part 5

P ?= NP



Decision Problems
▶ All of today’s problems are decision problems.

▶ Output: yes or no.
▶ Example: Does the graph have an Euler cycle?



P
▶ Some problems have polynomial time
algorithms.

▶ SHORTPATH, EULER

▶ The set of decision problems that can be solved
in polynomial time is called P.

▶ Example: SHORTPATH and EULER are in P.



NP
▶ The set of decision problems with “hints” that
can be verified in polynomial time is called NP.

▶ All of today’s problems are in NP.
▶ All problems in P are also in NP.

▶ Example: SHORTPATH, EULER, HAMILTONIAN,
LONGPATH are all in NP.



P ⊂ NP
▶ P is a subset of NP.

▶ It seems like some problems in NP aren’t in P.
▶ Example: HAMILTONIAN, LONGPATH.
▶ We don’t know polynomial time algorithms for these
problems.

▶ But that doesn’t such an algorithm is impossible!



P = NP?
▶ Are there problems in NP that aren’t in P?

▶ That is, is P ≠ NP?

▶ Or is any problem in NP also in P?
▶ That is, is P = NP?



P ≠ NP

NP

P

EULER

SHORTPATH

HAMILTONIAN

LONGPATH



P = NP

P=NP

EULER

SHORTPATH

HAMILTONIAN

LONGPATH



P = NP?
▶ Is P = NP?

▶ No one knows!

▶ Biggest open problem in Math/CS.4

▶ Most think P ≠NP.

4If you solve it, you’ll be rich and famous.



P = NP?
▶ Is P = NP?

▶ No one knows!

▶ Biggest open problem in Math/CS.4

▶ Most think P ≠NP.

4If you solve it, you’ll be rich and famous.



What if P = NP?
▶ Possibly Earth-shattering.

▶ Almost all cryptography instantly becomes obsolete;
▶ Logistical problems solved exactly, quickly;
▶ Mathematicians become obsolete.

▶ But maybe not...
▶ Proof could be non-constructive.
▶ Or, constructive but really inefficient. E.g., Θ(𝑛10000)



Lecture 18 | Part 6

NP-Completeness



Problem: 3-SAT
▶ Suppose x_1, … , x_n are boolean variables
(True,False)

▶ A 3-clause is a combination made by or-ing and
possibly negating three variables:
▶ x_1 or x_5 or (not x_7)
▶ (not x_1) or (not x_2) or (not x_4)



Problem: 3-SAT
▶ Given: 𝑚 clauses over 𝑛 boolean variables.

▶ Problem: Is there an assignment of x_1, … , x_n
which makes all clauses true simultaneously?

▶ No polynomial time algorithm is known.

▶ But it is easy to verify a solution, given a hint.
▶ 3-SAT is in NP.



Cook’s Theorem
Every problem in NP is polynomial-time reducible to
3-SAT.

▶ ...including Hamiltonian, long path, etc.
▶ 3-SAT is at least as hard as every problem in NP.
▶ “hardest problem in NP”



Cook’s Theorem (Corollary)
▶ If 3-SAT is solvable in polynomial time, then all
problems in NP are solvable in polynomial time.

▶ ...including Hamiltonian, long path, etc.



NP-Completeness
▶ We say that a problem is NP-complete if:

▶ it is in NP;
▶ every problem in NP is reducible to it.

▶ HAMILTONIAN, LONGPATH, 3-SAT are all
NP-complete.

▶ NP-complete problems are the “hardest” in NP.



Equivalence
▶ In some sense, NP-complete problems are
equivalent to one another.

▶ E.g., a fast algorithm for HAMILTONIAN gives a fast
algorithm for 3-SAT, LONGPATH, and all problems
in NP.



Who cares?
▶ Complexity theory is a fascinating piece of
science.

▶ But it’s practically useful, too, for recognizing
hard problems when you stumble upon them.



Lecture 18 | Part 7

Hard Optimization Problems



Hard Optimization problems
▶ NP-completeness refers to decision problems.

▶ What about optimization problems?

▶ We can typically state a similar decision problem.

▶ If that decision problem is hard, then
optimization is at least as hard.



Problem: bin packing
▶ Optimization problem:

▶ Given: bin size 𝐵, 𝑛 objects of size 𝛼1, … , 𝛼𝑛..▶ Problem: find minimum number of bins 𝑘 that can
contain all 𝑛 objects.

▶ Decision problem version:
▶ Given: bin size 𝐵, 𝑛 objects of size 𝛼1, … , 𝛼𝑛, integer 𝑘.▶ Problem: is it possible to pack all 𝑛 objects into 𝑘
bins?

▶ Decision problem is NP-complete, reduces to
optimization problem.



Example: traveling salesperson
▶ Optimization problem:

▶ Given: set of 𝑛 cities, distances between each.
▶ Problem: find shortest Hamiltonian cycle.

▶ Decision problem:
▶ Given: set of 𝑛 cities, distance between each, length ℓ.
▶ Problem: is there a Hamiltonian cycle of length ≤ ℓ?

▶ Decision problem is NP-complete, reduces to
optimization problem.



NP-complete problems in machine
learning

▶ Many machine learning problems are
NP-complete.

▶ Examples:
▶ Finding a linear decision boundary to minimize
misclassifications in non-separable regime.

▶ Minimizing 𝑘-means objective.



So now what?
▶ Just because a problem is NP-Hard, doesn’t
mean you should give up.

▶ Usually, an approximation algorithm is fast,
“good enough”.

▶ Some problems are even hard to approximate.



Summary
▶ Not every problem can be solved efficiently.

▶ Computer scientists are able to categorize these
problems.



Lecture 18 | Part 8

The Halting Problem



Really hard problems
▶ Some decision problems are harder than others.

▶ That is, it takes more time to solve them.

▶ Given enough time, all decision problems can be
solved, right?



Alan Turing

1912-1954



Turing’s Halting Problem
▶ Given: a function f and an input x.

▶ Problem: does f(x) halt, or run forever?

▶ Algorithm must work for all functions/inputs!



Turing’s Argument
▶ Turing says: no such algorithm can exist.

▶ Suppose there is a function halts(f, x):
▶ Returns True if f(x) halts.
▶ Returns False if f(x) loops forever.



Turing’s Argument
def evil_function(f):

if halts(f, f):
# loop forever

else: # it runs forever
return

▶ Consider evil_function(evil_function).
▶ Does it halt or not?

▶ Assuming that halt works leads to logical impossibility!
▶ So a working halt cannot exist.



Turing’s Argument
def evil_function(f):

if halts(f, f):
# loop forever

else: # it runs forever
return

▶ Consider evil_function(evil_function).
▶ Does it halt or not?

▶ Assuming that halt works leads to logical impossibility!
▶ So a working halt cannot exist.



Undecidability
▶ The halting problem is undecidable.

▶ Fact of the universe: there can be no algorithm
for solving it which works on all
functions/inputs.

▶ All of these problems are undecidable:
▶ Does the program terminate?
▶ Does this line of code ever run?
▶ Does this function compute what its specification
says?

▶ Many others...



Reality
▶ Physics: can’t go faster than the speed of light.

▶ Computer science:
▶ There’s a speed limit for certain problems, too.
▶ And some problems can’t even be solved!



The End


