
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6923: Written Homework 2.
Due Tuesday, October 15th, 2024, 11:59pm.

NO SLIP DAY FOR THIS HOMEWORK.
Discussion with other students is allowed for this problem set, but solutions must be written-up individually.

Problem 1: Impacts of Regularization (10pts)

Consider the ridge regularized least squares regression problem ∥Xβ − y∥22 + λ∥β∥22 with different positive
values of λ. Let β∗

1 = argmin ∥Xβ − y∥22 + λ1∥β∥22 and β∗
2 = argmin ∥Xβ − y∥22 + λ2∥β∥22.

(a) Prove that if λ1 ≥ λ2 then ∥β∗
1∥22 ≤ ∥β∗

2∥22. In words, increasing the regularization parameter always
decreases the norm of the optimal parameter vector.

(b) Prove that if λ1 ≥ λ2 then ∥Xβ∗
1−y∥22 ≥ ∥Xβ∗

2−y∥22. In words, increasing the regularization parameter
always leads to higher training loss, even if it might improve test loss.

(c) Suppose instead that we used LASSO regularization, so that Let β∗
1 = argmin ∥Xβ−y∥22+λ1∥β∥1 and

β∗
2 = argmin ∥Xβ − y∥22 + λ2∥β∥1. Do the above conclusions change?

Problem 2: Gaussian Naive Bayes (20pts)

The Naive Bayes Classifier can be extended to predictor variables with continuous values (instead of just
binary variables). Consider a data set where each example (x, y) contains a data vector x ∈ Rd and a label
y ∈ {0, 1}. As in class, each y is modeled as a Bernoulli random variable, which equals 1 with probability p
and 0 with probability 1− p. To model x we have two lists of mean/variances pairs:
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If y equals 0, then the jth entry of x is modeled as an independent Gaussian random variable with mean
µ0,j and variance σ2

0,j . Alternatively, if y equals 1, then the jth entry of x is modeled as an independent

Gaussian random variable with mean µ1,j and variance σ2
1,j .

(a) Given a training data set (x1, y1), . . . , (xn, yn) write down expressions for estimating all model parameters
µi,j and σ2

i,j from the data. (This is a relatively simple question).

(b) Given a new unlabled predictor vector xnew we would like to predict class label ynew using a maximum a
posterior (MAP) estimate. In other words, we want to choose ynew to maximize the posterior probability
p(ynew | xnew). Write pseudocode for determining if p(ynew = 0 | xnew) or p(ynew = 1 | xnew) is larger.
Hint: You probably want to use Bayes rule!

(c) Implement your method by completing the Python workbook hw2 stub.ipynb. Attach a printed PDF of
your completed notebook results to your homework submission. To avoid underflow issues, you might
want to work with the log of the probabilities instead of the probabilities directly – i.e., your code should
target the problem of determining log (p(ynew = 0 | xnew)) or log (p(ynew = 1 | xnew)) is larger.

(d) Consider the probabilistic model above with d = 1. So, our dataset consists of (x, y) pairs where x is a
scalar value. Suppose p(x | y = 1) is a Gaussian pdf with µ = 2 and σ = 3, and that p(x | y = 0) is also
Gaussian with µ = 5 and σ = 3. Suppose, too, that P (y = 1) = P (y = 0) = 1

2 .

Suppose we implement the MAP prediction rule you developed above for this dataset. Calculate the
probability that the prediction will be incorrect.

Hint: Your solution will likely require computing the area under a Gaussian pdf. There are a number of
ways to do this. For example, you can use something like scipy.stats.norm.cdf. We will let you read
the documentation to see how to use it, but it may be helpful to remember that if F is the cumulative

density function for a distribution with density f , then
∫ b

a
f(x) dx = F (b)− F (a).

https://en.wikipedia.org/wiki/Bernoulli_distribution
https://drive.google.com/file/d/1JNXdcW2Xk4Wgx_XyV4AMYEvoC0oHdR-o/view?usp=sharing


Problem 3: More Practice with MAP Calculations (5pts)

Consider a model similar to the one above, but with a non-Gaussian distribution. In particular, each data
points has a binary class label y ∈ {0, 1}. We have prior class probabilities: P (y = 0) = .4 and P (y = 1) = .6.
The data x, conditioned on the class labels y, is modeled as a continuous random variable that takes values
on the interval [0, 7]. Specifically, the conditional densities for x are known to be:

p(x|y = 0) =


1
5 , for 0 ≤ x ≤ 2
1
3 , for 2 < x ≤ 3
1
15 , for 3 < x ≤ 7

p(x|y = 1) =


1
6 , for 0 ≤ x ≤ 1
1
8 , for 1 < x ≤ 5
1
6 , for 5 < x ≤ 7

Given a new data point xnew, suppose we use Bayes’ theorem to compute the posterior probability of
each class given xnew, and make a predication based on the maximum posterior (i.e., use a MAP estimate).
For what values of x ∈ [0, 7] will this approach predict y = 1?

Problem 4: Bayesian Central Tendency (9pts)

Let’s revisit a question on the first homework from a Bayesian perspective.

(a) Suppose we have a data set of scalar numbers x1, . . . , xn. Assume a Bayesian probabilistic model in which
the numbers are drawn from a Gaussian distribution with unknown mean µ and variance σ2. We have no
prior information on µ and σ2: we assume all parameters are equally likely. Prove that the sample mean
µ̂ = 1

n

∑n
i=1 xi is an MLE estimate for the unknown parameter µ. I.e µ̂ = argmaxµ Pr(x1, . . . , xn | µ).

(b) Now assume a Bayesian probabilistic model in which the numbers are drawn from a Laplace Distribution
with unknown mean µ and variance 2b2. Prove that the sample median is a MLE estimate for the
unknown parameter µ.

(c) Suppose µ ∈ [0, 1] and x1, . . . , xn are drawn i.i.d from a Bernoulli distribution with parameter µ. I.e. xi

is 1 with probability µ and 1 with probability 1− µ. Prove that the sample mean µ̂ = 1
n

∑n
i=1 xi is also

an MLE estimator for µ in this setting.

Problem 5: Unexpected Mean Estimators (10pts)

In the problem above, the Bayesian approach suggested very intuitive and familiar estimates for the mean
– the sample average, sample median, etc. However, for some distributions, much more unusual mean
estimators turn out to be more effective.

The Rayleigh distribution is often used to model the magnitude of vectors in 2D space where the com-
ponents are independent Gaussian random variables. Specifically, for a random 2D vector v = (x, y), where

x ∼ N (0, σ2) and y ∼ N (0, σ2), the magnitude r =
√
x2 + y2 follows a Rayleigh distribution. This dis-

tribution frequently arises in applications such as wireless communication (signal strength in multipath
environments) and medical imaging (ultrasound speckle noise).

The Rayleigh distribution has probability density function (pdf):

p(x) =
x

σ2
e−x2/(2σ2), (1)

where σ ·
√
π/2 is the mean. Given this, a natural approach to estimating the unknown parameter σ from

data drawn from a Rayleigh distribution could be to compute the sample mean and multiply by
√
π/2. As

you will show, this is surprisingly suboptimal. The maximum likelihood estimator looks quite different.

a) Consider data points x1, . . . , xn drawn independent from a Rayleigh distribution with parameter σ.
Write down an expression for the log-likelihood of x1, . . . , xn given the parameter σ. I.e., write down
an expression for ln(p(x1, . . . , xn | σ)) where ln denotes the natural logarithm (base e).

https://en.wikipedia.org/wiki/Laplace_distribution
https://en.wikipedia.org/wiki/Rayleigh_distribution


b) Using your expression above, show that the maximum likelihood estimate of σ is

σMLE =

√√√√ 1

2n

n∑
i=1

x2
i . (2)
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