
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6923: Written Homework 3.
Due Tuesday, November 26th, 2024, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually.

Problem 1: Convexity Warm-up (10pts)

(a) Prove that if functions f(β) and g(β) are both convex, then f(β) + g(β) is also convex.

(b) Prove that, for λ ≥ 0, the functions λ‖β‖22 and λ‖β‖1 are both convex. Combined with the claim from
class that ‖Xβ − y‖22 is convex, conclude that the `2 and `1 regularized regression objectives are both
convex, and thus we can find a global minimum of these loss functions using gradient descent.

Problem 2: Complexity of Hypothesis Classes (15pts)

(a) In the lecture on learning theory we saw how to bound the number of training examples required to PAC-
learn certain functions (aka models, aka hypothesis classes) in the realizable setting. For the following
functions, give as tight an upper bound as you can on how many samples are required for PAC-learning
with accuracy ε and success probability (1− δ).

(i) A decision list is a boolean function mapping {x1, . . . , xd} ∈ {0, 1}d → {0, 1} of the following form:

If(y1) return z1

Else if(y2) return z2

...

Else if(yk) return zk,

Else return zk+1.

Above yi ∈ {x1, x̄1, x2, x̄2, . . . , xd, x̄d} for each i and zi ∈ {0, 1} for each i. Here x̄i denotes the
logical “not” of variable xi. k is the number of terms in the decision list and can be as long as we
want. Try to give a bound that depends polynomially on d but not on k at all.

(ii) A binary linear threshold function is a function mapping {x1, . . . , xd} ∈ {−1, 1}d → {0, 1} of the
following form:

1[w1x1 + w2x2 + . . .+ wdxd ≥ λ]

where wi ∈ {−1, 1} is a binary weight for variable xi and λ ∈ R is an arbitrary threshold.

(b) Suppose I want to perform model selection. I have q different hypothesis classes H1, . . . ,Hq and I know
that for some i, there is a function h∗ ∈ Hi that perfectly fits my data. I.e. with Rpop(h

∗) = 0. My goal
is to find some h such that Rpop(h) ≤ ε. Give as tight an upper bound as you can on how many samples
are required to solve this problem with success probability (1− δ).

Problem 3: Kernels for Shifted Images (15pts)

In class we discussed why the Gaussian kernel is a better similarity metric for MNIST digits than the
inner product. Here we consider an additional modification to the Gaussian kernel that is very similar to
state-of-the-art kernels for digit and character classification, which can achieve 99%+ accuracy on MNIST.

For illustration purposes we consider 5x5 black and white images: a pixel has value 1 if it is white and
value 0 if it is black. For example, consider the following images of two 0s and two 1s:

I1 =


0 0 0 0 0
0 1 1 1 0
0 1 0 1 0
0 1 1 1 0
0 0 0 0 0

 I2 =


0 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0

 I3 =


0 0 0 0 0
1 1 1 0 0
1 0 1 0 0
1 1 1 0 0
0 0 0 0 0

 I4 =


0 0 0 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 0





(a) Let xi ∈ {0, 1}25 denote the vectorized version of image Ii, obtained by concatenating the rows of the
matrix representation of the image into a vector. Compute the 4×4 kernel matrix K for images I1, . . . , I4
using the standard Gaussian kernel kG(Ii, Ij) = e−‖xi−xj‖22 (this is just a simple calculation, but you
might want to do it in Python to save time).

(b) Suppose I1 and I2 are in our training data and I3 and I4 are in our test data. Which training image is
most similar to each of our test images according to Gaussian kernel similarity? Do you expect a kernel
classifier (e.g., a 1-nearest neighbor method) to correctly or incorrectly classify I3 and I4?

(c) Consider a “left-right shift” kernel, which is a similarity measure defined as follows:

For an image Ii, let Irighti be the image with its far right column removed and let I lefti be the image with

its far left column removed. Intuitively, Irighti corresponds to the image shifted one pixel to the right
and I lefti corresponds to the image shifted one pixel left. Define a new similarity metric kshift as follows:

kshift(Ii, Ij) = kG(Irighti , Irightj ) + kG(I lefti , I leftj ) + kG(Irighti , I leftj ) + kG(I lefti , Irightj )

Intuitively this kernel captures similarity between images which are similar after a shift, something the
standard Gaussian kernel does not account for.

Recompute the a 4× 4 kernel matrix K for images I1, . . . , I4 using kshift.

(d) Again I1 and I2 were in our training data and I3 and I4 were in our test data. Now which training image
is most similar to each of our test images according to the “left-right shift” kernel? Do you expect a
kernel classifier (e.g., a 1-nearest neighbor method) to correctly or incorrectly classify I3 and I4?

(e) Prove that kshift is a positive semi-definite kernel function. Hint: Use the fact that kG is positive
semi-definite.

Problem 4. Steepest Descent (12pts)

Recall from Lecture 6 that gradient descent is often considered a “steepest descent” method because the

search direction, ∇L(β)
‖∇L(β)‖22

, solves the maximization problem:

∇L(β)

‖∇L(β)‖22
= arg max

v:‖v‖2=1

〈∇L(β),v〉.

In other words, if we had to choose a vector v of fixed Euclidean norm to maximize the decrease in objective

values from L(β) to L(β − ηv) as the step-size η → 0, we should choose v = ∇L(β)
‖∇L(β)‖22

.

If we replace the Euclidean norm with a different norm, we obtain different variants of “steepest descent”.

(a) What steepest search direction should we choose to solve maxv:‖v‖1=1〈∇L(β),v〉? Justify your answer.

(b) What about maxv:‖v‖∞=1〈∇L(β),v〉?

(c) Suppose we implement steepest descent with update rule β ← β − ηv∗, where v∗ is either of the

alternative steepest descent directions derived above. Prove that limη→0
L(β−ηv∗)−L(β)

η is negative. In
other words, like gradient descent, for small learning rates, either choice always decreases the objective
value.

A consequence of Part (c) is that any of these steepest descent methods will provably converge to a stationary
point for sufficiently small learning rate, η.

Problem 5. Randomized Coordinate Descent (8pts)

Randomized coordinate descent (RCD) is a close relative of stochastic gradient descent that is often used
for minimizing loss functions in machine learning. See below for pseudocode. Note that for a bolded vector
a, we used ai to denote the ith entry.

• Choose starting vector β ∈ Rd and positive learning rate η.



• For i = 1, . . . , T

– Compute g = ∇L(β).

– Choose j uniformly at random from j ∈ {1, . . . , d}.
– For index j, update βj ← βj − η · gj .

The method is similar to stochastic gradient descent in that it often allows for cheaper per-iteration cost
than gradient descent. It does so by updating one randomly chosen entry (the jth entry) of the parameter
vector β. The vector is updated by subtracting off a scaling of the jth entry of the current gradient.

(a) Let β(i) be the value of the parameter vector β at the end of the ith iteration of the for loop above.

Prove that E[β(i) − β(i−1)] = −c∇L(β(i−1)) for some positive scalar constant c. I.e., like SGD, RCD
moves in the direction of the negative gradient in expectation.

(b) Prove that, like the steepest descent methods considered in Problem 4 limη→0 L(β(i)) − L(β(i−1)) is
negative for stochastic coordinate descent. Interestingly, this same claim is not true for stochastic
gradient descent. Even as the step size goes to zero, an SGD update is not guaranteed to decrease the
objective value.

(c) Optional Bonus (5pts). Consider the least squares regression loss, L(β) = ‖Xβ − y‖22 for a data
matrix X with d columns. Recall that this loss has gradient ∇L(β) = 2XT (Xβ − y). Show that, after
an upfront cost of O(nd) on the first iteration, each subsequent iteration of coordinate descent on this
loss can be implemented in O(n) time. Write pseudocode showing an O(n) time implementation. Hint:
This problem requires some cleverness. Try to use the information from previous iterations to your
advantage – you cannot be able to compute g from scratch at each iteration.


	Problem 1: Convexity Warm-up (10pts)
	Problem 2: Complexity of Hypothesis Classes (15pts)
	Problem 3: Kernels for Shifted Images (15pts)
	Problem 4. Steepest Descent (12pts)
	Problem 5. Randomized Coordinate Descent (8pts)

