
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6923: Written Homework 4.
Due Friday, Dec 13, 2024, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually.

Problem 1: Convolution for Shifted Images (15pts)

On the last problem set we considered kernel functions for a cartoonish problem of classifying images of digits
under shifts. Here we will think about how to do the same thing with a convolutional feature extractor.

Again consider the following images of 0s and 1s. Here we take the convention that white pixels have +1
values and black pixels have −1 values.

I1 =


−1 −1 −1 −1 −1
−1 +1 +1 +1 −1
−1 +1 −1 +1 −1
−1 +1 +1 +1 −1
−1 −1 −1 −1 −1

 I2 =


−1 −1 −1 −1 −1
−1 −1 +1 −1 −1
−1 −1 +1 −1 −1
−1 −1 +1 −1 −1
−1 −1 −1 −1 −1

 I3 =


−1 −1 −1 −1 −1
+1 +1 +1 −1 −1
+1 −1 +1 −1 −1
+1 +1 +1 −1 −1
−1 −1 −1 −1 −1



I4 =


−1 −1 −1 −1 −1
−1 −1 −1 +1 −1
−1 −1 −1 +1 −1
−1 −1 −1 +1 −1
−1 −1 −1 −1 −1

 I5 =


−1 −1 +1 −1 −1
−1 −1 +1 −1 −1
−1 −1 +1 −1 −1
−1 −1 −1 −1 −1
−1 −1 −1 −1 −1

 I6 =


−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
+1 +1 +1 −1 −1
+1 −1 +1 −1 −1
+1 +1 +1 −1 −1



I7 =


−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
−1 +1 −1 −1 −1
−1 +1 −1 −1 −1
−1 +1 −1 −1 −1

 I8 =


−1 −1 −1 −1 −1
−1 −1 +1 +1 +1
−1 −1 +1 −1 +1
−1 −1 +1 +1 +1
−1 −1 −1 −1 −1


Your goal is to design a convolutional feature transformation C(I) that would allow I3, I4, I5, I6, I7, I8 to

all be correctly classified using a simple nearest neighbor classifier trained with I1, I2. Specifically, we should
have that ∥C(Ii)−C(I1)∥2 < ∥C(Ii)−C(I2)∥2 for i ∈ {3, 6, 8} and that ∥C(Ii)−C(I1)∥2 > ∥C(Ii)−C(I2)∥2
for i ∈ {4, 5, 7}. Design such a C with the following two-layer form:

C(I) = g(I ⊛W1)⊛W2,

where W1 and W2 are 2 × 2 convolutional filters and g is any entrywise non-linearity. You can select W1,
W2, and g to be anything you like.

To present your solution, specify your choice of W1, W2, and g, and attach code that implements C and
shows that you can correctly classify the images using this transformation. Explain in a few sentences how
you came to your choices for W1, W2, and g.

Note: There are many possible valid transformations, so please come up with your own solution and
don’t ask a classmate to see their approach. I expect a lot of diversity in the solutions students find. If you
aren’t able to find a transformation, explain in words what approach you tried, and show your best result.

Problem 2: The necessity of non-linearities in CNNs (15pts)

Consider a Convolutional Neural Network that processes 1 dimensional vector data (e.g. vectors of length
d). Typically such a network has convolutional layers that convolve the input with a set of filters, and then
apply an entrywise non-linearity to the result. This is often followed by another convolutional layer.

What if you didn’t include the non-linearity? Would the network still be as powerful? In this problem
you will prove that the answer is no. In particular, let W1 ∈ Rℓ and W2 ∈ Rk be convolutional filters. Prove
that there is always another convolutional filter W̄ such that:

(x⊛W1)⊛W2 = x⊛ W̄



In other words, if there was no non-linearity, two adjacent convolutional layers could be replaced by a single
convolutional layer that uses different filters!

Problem 3: Triangulating Points via Principal Component Analysis (20pts)

(15 pts) Consider a dataset x1, . . . ,xn ∈ Rd arranged as rows in an n × d matrix X. Assume d ≤ n. As
discussed in class, PCA can be used to find a set of shorter “code vectors” z1, . . . , zn ∈ Rk that are useful
for data visualization. Specifically, if we choose these code vectors to be the loading vectors of PCA applied
to X we should have that for each i, j:

⟨zi, zj⟩ ≈ ⟨xi,xj⟩ and ∥zi − zj∥2 ≈ ∥xi − xj∥2

What if we don’t have access to X itself, but only to the distances between each pair of data points? I.e.
you are given symmetric n× n matrix D with Di,j = Dj,i = ∥xi − xj∥22.

(a) From the information in D show how to recover XXT for a data set whose distances match those in D.
Hint: Since distances are only unique up to rotation and translation, you can assume that one of the
points is centered at the origin. E.g. that x1 = 0.

(b) Explain how to use the SVD of XXT to recover the rank k loading vectors of X, z1, . . . , zn ∈ Rk.

(c) When we set k = d, prove that for all i, j we will obtain vectors that exactly capture the geometry of
x1, . . . ,xn ∈ Rd. I.e. that:

∥zi − zj∥2 = ∥xi − xj∥2

This is a really useful property – it means that if you have pairwise distances between points that you
know come from a low-dimensional space, you can back out that arrangement using PCA. This problem
is related to that of using triangulation to locate points based on distances.

(d) Implement your method from part (a) and (b) and run it on the U.S. cities dataset provided in USci-
ties.txt for rank k = d = 2. This data set contains unsquared Euclidean distances between 20 cities, so
you need to square the distances to obtain D. Plot your estimated city locations z1, . . . , zn on a 2D plot
and label the cities to make it clear how the plot is oriented. Submit these images and your code with
the problem set (attached to the same PDF). I’m expecting a result similar to the one below (note that
the locations look correct up to rotation).

https://akbarrafiey.github.io/ML6923/homeworks/HW04/UScities.txt
https://akbarrafiey.github.io/ML6923/homeworks/HW04/UScities.txt


(e) A cool property of this technique is that it’s very robust to inaccuracies in the distance matrix D. Rerun
your code, but where you first perturb the distances in D. Specifically, replace both Di,j and Dj,i with
a random number between (1− r)Di,j and (1 + r)Di,j (i.e., keep the matrix symmetric). Plot the city
locations recovered for a few different values of r. How high can you set the value and still get a good
approximation to the city locations? This last answer doesn’t need to be a quantitative.


	Problem 1: Convolution for Shifted Images (15pts)
	Problem 2: The necessity of non-linearities in CNNs (15pts)
	Problem 3: Triangulating Points via Principal Component Analysis (20pts)

