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Course news

• First lab assignment lab1.ipynb due Monday, by midnight.

• Lab 02 will be posted this weekend.

• First written assignment will be posted next week.
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Recap: supervised learning

Training Dataset:

• Given input pairs (x1, y1), . . . , (xn, yn).

• Each xi is an input data vector (the predictor).

• Each yi is a (continuous) output variable (the target).

Objective:

• Have the computer automatically find some function f (x)

such that f (xi ) is close to yi for the input data.

Standard approach: Convert the supervised learning problem to a

multi-variable optimization problem.
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Supervised learning definitions

What are the three components needed to setup a supervised

learning problem?

• Model f✓(x): Class of equations or programs which map input x to

predicted output. We want f✓(xi ) ⇡ yi for training inputs.

• Model Parameters ✓: Vector of numbers. These are numerical

nobs which parameterize our class of models.

• Loss Function L(✓): Measure of how well a model fits our data.

Typically some function of f✓(x1)� y1, . . . , f✓(xn)� yn

Empirical Risk Minimization: Choose parameters ✓⇤ which minimize

the Loss Function:

✓⇤ = argmin
✓

L(✓)
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Simple linear regression

Simple Linear Regression

• Model: f�0,�1(x) = �0 + �1 · x

• Model Parameters: �0,�1

• Loss Function: L(�0,�1) =
Pn

i=1(yi � f�0,�1(xi ))
2

Goal: Choose �0,�1 to minimize

L(�0,�1) =
Pn

i=1(yi � �0 � �1xi )2.

Simple closed form solution: �1 = �xy/�2
x ,�0 = ȳ � �1x̄ . How did

we solve for this solution?
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Example from last class

Predict miles per gallon of a vehicle given information about its

engine/make/age/etc.
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Multiple linear regression
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More common goal

Predict target y using multiple features, simultaneously.

Motivating example: Predict diabetes progression in patients

after 1 year based on health metrics. (Measured via numerical

score.)

Features: Age, sex, average blood pressure, six blood serum

measurements (e.g. cholesterol, lipid levels, iron, etc.)

Demo in demo diabetes.ipynb (Demo 3).
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Libraries for this demo

Introducing Scikit Learn.
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Scikit learn

Pros:

• One of the most popular “traditional” ML libraries.

• Many built in models for regression, classification, dimensionality

reduction, etc.

• Easy to use, works with ‘numpy‘, ‘scipy‘, other libraries we use.

• Great for rapid prototyping, testing models.

Cons:

• Everything is very “black-box”: di�cult to debug, understand why

models aren’t working, speed up code, etc.
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Scikit learn

Modules used:

• datasets module contains a number of pre-loaded datasets.

Saves time over downloading and importing with pandas.

• linear model can be used to solve Multiple Linear

Regression. A bit overkill for this simple model, but gives you

an idea of sklearn’s general structure.
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The data matrix

Target variable:

• Scalars y1, . . . , yn for n data examples (a.k.a. samples).

Predictor variables:

• d dimensional vectors x1, . . . , xn for n data examples and d

features
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Linear algebra review

Now it the time to review your linear algebra!

Notation:

• Let X be an n ⇥ d matrix. Written X 2 Rn⇥d .

• xi is the i
th row of the matrix.

• x(j) is the j
th column.

• xij is the i , j entry.

• For a vector y, yi is the i
th entry.

• XT is the matrix transpose.

• yT is a vector transpose.
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Linear algebra review

Things to remember:

• Matrix multiplication. If we multiply X 2 Rn⇥d by Y 2 Rd⇥k

we get XY = Z 2 Rn⇥k .

• Inner product/dot product. hy, zi =
Pn

i=1 yizi .

• hy, zi = yT z = zTy.

• Euclidean norm: kyk2 =
p
yTy.

• (XY)T = YTXT .
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Linear algebra review

Things to remember:

• Identity matrix is denoted as I.

• “Most” square matrices have an inverse: i.e. if Z 2 Rn⇥n,

there is a matrix Z�1 such that Z�1Z = ZZ�1 = I.

• Let D = diag(d) be a diagonal matrix containing the entries

in d.

• XD scales the columns of X. DX scales the rows.
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Linear algebra review

You also need to be comfortable working with matrices in numpy .

Go through the demo numpy matrices.ipynb (Demo 1) slowly.
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The data matrix

Target variable:

• Scalars y1, . . . , yn for n data examples (a.k.a. samples).

Predictor variables:

• d dimensional vectors x1, . . . , xn for n data examples and d

features

Assume first columns contains all 1’s. If it doesn’t append on a

column of all 1’s.
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Multiple linear regression

Data matrix indexing:

X =

2

6666664

x11 x12 . . . x1d

x21 x22 . . . x2d

x31 x32 . . . x3d
...

...
...

xn1 xn2 . . . xnd

3

7777775

Multiple Linear Regression Model:

Predict yi ⇡ �1xi1 + �2xi2 + . . .+ �dxid

The rate at which diabetes progresses depends on many factors,

with each factor having a di↵erent magnitude e↵ect.
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Multiple linear regression

X =

2

6666664

x11 x12 . . . x1d

x21 x22 . . . x2d

x31 x32 . . . x3d
...

...
...

xn1 xn2 . . . xnd

3

7777775
=

2

6666664

1 x12 . . . x1d

1 x22 . . . x2d

1 x32 . . . x3d
...

...
...

1 xn2 . . . xnd

3

7777775

Multiple Linear Regression Model:

Predict yi ⇡ �1 + �2xi2 + . . .+ �dxid

In this case, �1 serves as the “intercept” parameter.
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Multiple linear regression

Multiple Linear Regression Model:

Predict yi ⇡ �1xi1 + �2xi2 + . . .+ �dxid

Data matrix:

X =

2

6666664

x11 x12 . . . x1d

x21 x22 . . . x2d

x31 x32 . . . x3d
...

...
...

xn1 xn2 . . . xnd

3

7777775
=

2

6666664

1 x12 . . . x1d

1 x22 . . . x2d

1 x32 . . . x3d
...

...
...

1 xn2 . . . xnd

3

7777775

Linear algebraic form:

yi ⇠ hxi ,�i
y ⇠ X�
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Multiple linear regression

Linear Least-Squares Regression.

• Model Parameters:

� = [�1,�2, . . . ,�d ]

• Model:

f�(x) = hx,�i

• Loss Function:

L(�) =
nX

i=1

|yi � hxi ,�i|2

= ky � X�k22
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Linear algebraic form of loss function
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Loss minimization

Machine learning goal: minimize the loss function

L(�) : Rd ! R.

Find possible optima by determining for which � = [�1, . . . ,�d ] all

the gradient equals 0. I.e. when do we have:

rL(�) =

2

66664

@L
@�1
@L
@�2
...
@L
@�d

3

77775
=

2

6664

0

0

. . .

0

3

7775
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Gradient

Loss function:

L(�) = ky � X�k22

Gradient:

�2 · XT (y � X�)

Can check that this is equal to 0 if � =
�
XTX

��1
XTy. There are

no other options, so this must be the minimum.
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Single variable warmup

What is the derivative of: f (x) = x
2?
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Gradient

Loss function: L(�) = ky � X�k22
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Multiple linear regression solution

Take away: simple form for the gradient means that multiple linear

regression models are easy and e�cient to optimize.

�⇤ = argmin
�

ky � X�k22 =
⇣
XTX

⌘�1
XTy

• Often the “go to” first regression method. Throw your data in

a matrix and see what happens.

• Serve as the basis for much richer classes of models.
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Multiple linear regression solution

Need to compute �⇤ = argmin� ky � X�k22 =
�
XTX

��1
XTy.

• Main cost is computing (XTX)�1 which takes O(nd2) time.

• Can solve slightly faster using the method

numpy.linalg.lstsq, which is running an algorithm based

on QR decomposition.

• For larger problems, can solve much faster using an iterative

methods like scipy.sparse.linalg.lsqr.

Will learn more about iterative methods when we study Gradient

Descent.
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Encoding data as a numerical matrix

It is not always immediately clear how to do this! One of the first

issue we run into is categorical data:

x1 = [42, 4, 104, hybrid, ford]

x2 = [18, 8, 307, gas, bmw]

x2 = [31, 4, 150, gas, honda]

...
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Encoding data as a numerical matrix

Binary data is easy to deal with – pick one category to be 0, one

to be 1. The choice doesn’t matter – it will not impact the overall

loss of the model

x1 = [42, 4, 104, hybrid, ford]

x2 = [18, 8, 307, gas, bmw]

x2 = [31, 4, 150, gas, honda]

...

x1 = [42, 4, 104, 1, ford]

x2 = [18, 8, 307, 0, bmw]

x2 = [31, 4, 150, 0, honda]

...
29



Dealing with categorical variables

What about a categorical predictor variable for car make with more

than 2 options: e.g. Ford, BMW, Honda. How would you

encode as a numerical column?
2

666666664

ford

ford

honda

bmw

honda

ford

3

777777775

!

2

666666664

3

777777775

30
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One hot encoding

Better approach: One Hot Encoding.
2

666666664

ford

ford

honda

bmw

honda

ford

3

777777775

!

2

666666664

1 0 0

1 0 0

0 1 0

0 0 1

0 1 0

1 0 0

3

777777775

• Create a separate feature for every category, which is 1 when

the variable is in that category, zero otherwise.

• Not too hard to do by hand, but you can also use library

functions like sklearn.preprocessing.OneHotEncoder.

Avoids adding inadvertent linear relationships.
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Transformed linear models
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Example from last time

Instead of fitting the model mpg ⇡ �0 + �1 · horsepower, fit the
model mpg ⇡ �0 + �1 · 1/horsepower.

How would you know to make such a transformation?

Better approach: Choose a more flexible non-linear model class.
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Transformed linear models

Suppose we have singular variate data examples (x , y). We could

fit the non-linear polynomial model:

y ⇡ �0 + �1x + �2x
2 + �3x

3.

Claim: This can be done using an algorithm for multivariate

regression!
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Transformed linear models

Transform into a multiple linear regression problem:

X =

2

6666664

1 x1 x
2
1 x

3
1

1 x2 x
1
2 x

3
2

1 x3 x
2
3 x

3
3

...
...

...

1 xn x
2
n x

3
n

3

7777775

What is the output of X�?

34
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Transformed linear models

More generally, have each column j is generated by a di↵erent

basis function �j(x). Could have:

• �j(x) = x
q

• �j(x) = sin(x)

• �j(x) = cos(10x)

• �j(x) = 1/x

When might you want to include sins and cosines?
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Transformed linear models

When might you want to include sins and cosines?

Time series data:

There is usually not much harm in including irrelevant variable

transformation.
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Multinomial model

Transformations can also be for multivariate data.

Example: Multinomial model.

• Given a dataset with target y and predictors x , z .

• For inputs (x1, z1), . . . , (xn, zn) construct the data matrix:

2

66664

1 x1 x
2
1 z1 z

2
1 x1z1

1 x2 x
2
2 z2 z

2
2 x2z2

...
...

...

1 xn x
2
n zn z

2
n xnzn

3

77775

• Captures non-linear interaction between x and z .
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Model selection

Remainder of lecture: Learn about model selection, test/train

paradigm, and cross-validation through a simple example.

I have a Python demo working through this example.
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Fitting a polynomial

Simple experiment:

• Randomly select data points x1, . . . , xn 2 [�1, 1].

• Choose a degree 3 polynomial p(x).

• Create some fake data: yi = p(xi ) + ⌘ where ⌘ is a random

number (e.g random Gaussian).

39

-



Fitting a polynomial

Simple experiment:

• Use multiple linear regression to fit a degree 3 polynomial.
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fitting a polynomial

What if we fit a higher degree polynomial?

• Fit degree 5 polynomial under squared loss.

• Fit degree 10 polynomial under squared loss.
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Fitting a polynomial

Even higher?

• Fit degree 40 polynomial under squared loss.
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Model selection

The more complex our model class (i.e. the higher degree we

allow) the better our loss:
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Model selection

Consider X 2 Rn⇥d and X̄ = [X, z] 2 Rn⇥d+1 with one additional

column appended on.

Claim:

min
�̄2Rd+1

kX̄�̄ � yk22  min
�2Rd

kX� � yk22.

44
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Model selection

The more complex our model class the better our loss:

So training loss alone is not usually a good metric for model

selection. Small loss does not imply generalization.

Generalization: How well do we do on new data.
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Model selection

Problem: Loss alone is not informative for choosing model.

For more complex models, we get smaller loss on the training data,

but don’t expect to perform well on “new” data:

In other words, the model does not generalize.
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Model selection

Solution: Directly test model on “new data”.

• Loss continues to decrease as model complexity grows.

• Performance on new data “turns around” once our model gets

too complex. Minimized around degree 4.

47



Train-test paradigm

More reasonable approach: Evaluate model on fresh test data

which was not used during training.

Test/train split:

• Given data set (X, y), split into two sets (Xtrain, ytrain) and

(Xtest, ytest).

• Train q models f (1), . . . , f (q) by finding parameters which

minimize the loss on (Xtrain, ytrain).

• Evaluate loss of each trained model on (Xtest, ytest).

Sometimes you will see the term validation set instead of test set.

Sometimes there will be both: use validation set for choosing the model,

and test set for getting a final performance measure.
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Train-test paradigm

• Train loss continues to decrease as model complexity grows.

• Test loss “turns around” once our model gets too complex.

Minimized around degree 3� 4.

49
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Generalization error

If the test loss remains low, we say that the model generalizes.

Test lost is often called generalization error.
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Train-test paradigm

Typical train-test split: 90-70% / 10-30%. Trade-o↵ between

optimization of model parameters and better estimate of model

performance.
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K-fold cross validation

• Randomly divide data in K parts.
• Typical choice: K = 5 or K = 10.

• Use K � 1 parts for training, 1 for test.

• For each model, compute test loss Lts for each “fold”.

• Choose model with best average loss.

• Retrain best model on entire dataset.

Is there any disadvantage to choosing K larger?

52



The fundamental curve of ML

The above trend is fairly representative of what we tend to see

across the board:
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Train-test intuition

Is “test error” the end goal though? Don’t we care about “future”

error?

Intuition: Models which perform better on the test set will

generalize better to future data.

Goal: Introduce a little bit of formalism to better understand what

this means. What is “future” data?
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Statistical learning model

Statistical Learning Model:

• Assume each data example is randomly drawn from some

distribution (x, y) ⇠ D.

E.g. x1, . . . , xd are Gaussian random variables with parameters

µ1,�1, . . . , µd ,�d .

This is not (really) a simplifying assumption! The distribution

could be arbitrarily complicated.
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Risk

Statistical Learning Model:

• Assume each data example is randomly drawn from some

distribution (x, y) ⇠ D.

• Define the Risk of a model/parameters:

R(f ,✓) = E(x,y)⇠D [` (f (x,✓), y)]

here ` is our loss function (e.g. `(z , y) = |z � y | or
`(z , y) = (z � y)2).

Goal: Find model f 2 {f (1), . . . , f (q)} and parameter vector ✓ to

minimize the R(f ,✓).
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Risk

• (Population) Risk:

R(f ,✓) = E(x,y)⇠D [` (f (x,✓), y)]

• Empirical Risk: Draw (x1, y1), . . . , (xn, yn) ⇠ D

RE (f ,✓) =
1

n

nX

i=1

` (f (xi ,✓), yi )
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Empirical risk

For any fixed model f and parameters ✓,

E [RE (f ,✓)] = R(f ,✓).

Only true if f and ✓ are chosen without looking at the data used

to compute the empirical risk.
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Model selection

• Train q models (f (1),✓⇤
1), . . . , (f

(q),✓⇤
q).

• For each model, compute empirical risk RE (f (i),✓
⇤
i ) using test

data.

• Since we assume our original dataset was drawn independently

from D, so is the random test subset.

No matter how our models were trained or how complex they are,

RE (f (i),✓
⇤
i ) is an unbiased estimate of the true risk R(f (i),✓⇤

i ) for

every i . Can use it to distinguish between models.
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Model selection example

bag-of-words models and n-grams

Common way to represent documents (emails, webpages, books)

as numerical data. The ultimate example of 1-hot encoding.

bag-of-words
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Model selection example

bag-of-words models and n-grams

Common way to represent documents (emails, webpages, books)

as numerical data. The ultimate example of 1-hot encoding.

bi-grams
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Model selection example

bag-of-words models and n-grams

Common way to represent documents (emails, webpages, books)

as numerical data. The ultimate example of 1-hot encoding.

tri-grams
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Model selection example

Models of increasing order:

• Model f (1)✓1
: spam filter that looks at single words.

• Model f (2)✓2
: spam filter that looks at bi-grams.

• Model f (3)✓3
: spam filter that looks at tri-grams.

• . . .

“interest” “low interest” “low interest loan”

Increased length of n-gram means more expressive power.

Will also be relevant in our first generative ML lab!
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Model selection example

Electrocorticography ECoG (upcoming lab):

• Implant grid of electrodes on surface of the brain to measure

electrical activity in di↵erent regions.

• Predict hand motion based on ECoG measurements.

• Model order: predict movement at time t using brain signals

at time t, t � 1, . . . , t � q for varying values of q.
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Autoregressive model

Predicting time t based on a linear function of the signals at time

t, t � 1, . . . , t � q is not the same as fitting a line to the time

series. It’s much more expressive.

Predecessor of modern “recurrent neural networks”.

65

2



Model selection lab tip

Electrocorticography ECoG lab:

First lab where computation actually matters (solving

regression problems with ⇠ 40k examples, ⇠ 1500 features)

Makes sense to test and debug code using a subset of the data.
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Adaptive data analysis

Slight caveat: This is typically not how machine learning or

scientific discovery works in practice!

Typical workflow:

• Train a class of models.

• Test.

• Adjust class of models.

• Test.

• Adjust class of models.

• Cont...

Final model implicitly depends on test set because performance on

the test set guided how we changed our model.
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Adaptive data analysis

Popularity of ML benchmarks and competitions leads to

adaptivity at a massive scale.

Kaggle (various competitions)

Imagenet (image classification and categorization) 68



Adaptive data analysis

Is adaptivity a problem? Does it lead to over-fitting? How

much? How can we prevent it? All current research.
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Imagenet dataset

Collected by Fei-Fei Li’s group at Stanford in 2006ish and labeled

using Amazon Mechanical Turk.

We now have neural network models that can solve these

classification problems with > 95% accuracy. 70



Adaptive data analysis

Do ImageNet Classifiers Generalized to ImageNet?

Interestingly, when comparing popular vision models on “fresh”

data, while performance dropped across the board, the relative

rank of model performance did not change significantly.
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