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Regularization + Bayesian Perspective
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Course news

e The first written HW has been posted, due October 01.
e Reminder: Lab 02 due September 24.



Model selection:

e Train models fe(ll), ey fg(j) independently on training data to
find optimal parameters 67, ..., 0.

o Check loss Liest(f(V),07), .. ., Leest(f(9), 07) on test data.
e Select model with lowest test lost.
Can be used for arbitrary sets of models. Often used when you are

not sure how “complex” your model should be for the data, and
want to find a sweet spot between a good fit, and not overfitting.
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Quick aside on numerical issues

In the demo 4 we had you use numpy.polynomial .polynomial.
However, as we discussed early, we can use multiple linear
regression instead by constructing the data matrix:

(1 1 X2 x{]

1 x x3 X3
X=11 x3 X32 x33
1 X X3 X

Then find polynomial coefficents as B = (X7 X)"1XTy.



Quick aside on numerical issues
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Quick aside on numerical issues

# built in function
beta_hat = poly.polyfit(xdat,ydat,d)

# manual fit using naive multivariate regression
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What do you think is the reason?



Quick aside on numerical issues

# built in function
beta_hat = poly.polyfit(xdat,ydat,d)

# manual fit using naive multivariate regression
X = np.zeros([len(xdat),d+1])
for i in range(d+1):
X[:,1] = xdatski
my_beta = np.linalg.inv(np.transpose(X)@X)@np.transpose(X)@ydat
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Has to do with numerical round-off error. (Scipy still uses linear

regression, but with extra “tricks” to avoid numerical issues.) 8



Quick aside on numerical issues

e Your computer can easily deal with both very large and very
small numbers. Underflow and overflow are extremely unlikely
to be issues in floating point arithmetic.

e The issue is when you compute using numbers of very
differing magnitude.



Quick aside on numerical issues

e Your computer can easily deal with both very large and very
small numbers. Underflow and overflow are extremely unlikely
to be issues in floating point arithmetic.

e The issue is when you compute using numbers of very
differing magnitude

print(.3%10%x-34 + 10%*-36 — 10%*-36)

3e-35

print(.3%10%%34 + 10%x36)

1.0083e+36

print(.3x10%+-34 + 10 - 10)

0.0 10



Quick aside on numerical issues

Recall that we chose each x; € [—1, 1] uniformly at random.

(1 x1 X2 X

X x22 XS’

X=1|1 x3 X§ xg’
1 xn x5 X3
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Regularization



Over-parameterized models

In the model selection examples we discussed last class, we had full
control over the complexity of the model: could range from
underfitting to overfitting.

In practice, you often don't have this freedom. Even the most

basic model might lead to overfitting.
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Over-parameterized models

Example: Linear regression model where d > n.

d features
A

n examples

Can (almost) always find 3 so that X3 =y exactly.
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High dimensional linear models

Claim: For almost all sets of n, length n vectors x@ o x(M) we
can write any vector y as a linear combination of these vectors.

—

|.e., can find some coefficients so that
Bix®M + .+ gqx(q) =X8=y.
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Zero train loss

e We will discuss some models later in the class where zero
training loss is not necessarily a bad sign: k-nearest neighbors,
some neural nets.

e Typically however it will be a sign of overfitting, as in the
polynomial regression example.

ii5)



Feature selection

Select some subset of < n features to use in model:

—

X X

Filter method: Compute some metric for each feature, and select
features with highest score.

e Example: compute loss or R? value when each feature in X is
used in single variate regression.
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Feature selection

Exhaustive approach: Pick best subset of g features. Train (g)
models.
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Feature selection

Faster approach: Greedily select g features.

Stepwise Regression:

e Forward: Step 1: pick single feature that gives lowest loss.
Step k: pick feature that when combined with previous k — 1
chosen features gives lowest loss.

e Backward: Start with all of the features. Greedily eliminate
those which have least impact on model performance.

Feature selection deserves more than two slides, but we

won’t go into too much more detail!
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Alternative approach

Regularization: Discourage overfitting by adding a regularization
penalty to the loss minimization problem.

i [L(B) + Reg(B)]-

19



Alternative approach

Regularization: Discourage overfitting by adding a regularization
penalty to the loss minimization problem.

s [L(B) + Reg(B)].-

Example: Least squares regression: L(3) = ||XB — y|/3.

e Ridge regression ({2): Reg(3) = A\||33
e LASSO (least absolute shrinkage and selection operator) (¢1):
Reg(8) = A8l

e Elastic net: Reg(8) = \1||B]]1 + A2|8]I3

Note that arg ming [L(B)+Reg(B)] # arg ming [L(B)]
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Ridge regularization: perspective 1

Ridge regression: ming (| X8 — y[|3 + A[|8]3) -

e As \ — oo, we expect [|3]|3 — 0 and | X8 —y|I3 — |lyli3.
e By choosing different values of A we have models of varying
accuracy/complexity.

Loss
IXB-yl
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Polynomial examples

Fit degree 20 polynomial with varying levels of regularization.
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Ridge regularization: perspective 2

Ridge regression: ming (| X8 — y[3 + A[|8]3) -

e As )\ — oo, we expect [|B]|3 — 0 and | X8 —y|I3 — |lyl3.
e Feature selection methods attempt to set many coordinates in
B to 0. Ridge regularizations encourages coordinates to be

close to zero.

-0 N — Income
2 N 10
* ~ - Limit
2 o N "
&5 @ s, Rating
S o - Student
3 8
Q
© g
o - ~
B S
%‘ o 4 P
<
2 8
8 7
[}
s
8
8 T T T
1e-02 1e+00 10402 1404

A

23



Ridge regularization

Ridge regression: ming [|X8 — y||3 + A||3]/3.

e As )\ — oo, we expect [|B]|3 — 0 and | X8 —y|I3 — |lyli3.
e Feature selection methods attempt to set many coordinates in

B to 0. Ridge regularizations encourages coordinates to be

small.
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Ridge regularization

How do we minimize: Lr(B) = || X8 — y||3 + A||33?
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Lasso regularization

Lasso regularization: ming || X3 — y|3 + A||8]1-

e As A\ — oo, we expect ||3]|1 — 0 and || X8 —yl|3 — [|yll3.
e Typically encourages subset of 3;'s to go to zero, in contrast

to ridge regularization.
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Lasso regularization

Pros:

e Simpler, more interpretable model.

e More intuitive reduction in model order.
Cons:

e No closed form solution because [|3]|1 is not differentiable.

e Can be solved with iterative methods, but generally not as
quickly as ridge regression.

27



Regularization

Notes:

e Model selection/cross validation used to choose optimal

scaling A on A||B||3 or A||B|1.
e Often grid search for best parameters is performed in “log
space”. E.g. consider [Ar,...,\g] = 1.5[747372-1,-012.3.4]
e Regularization methods are not invariant to data scaling.
Typically when using regularization we mean center and scale

columns to have unit variance.

28



The bayesian/probabilistic modeling perspective



Classification setup

e Data Examples: xi,...,x, € RY

e Target: yi,...,yn €{0,2,...,9 — 1} when there are ¢
classes.
e Binary Classification: g = 2, so each y; € {0,1}.
e Multi-class Classification: g > 2. !

!Note that there is also multi-label classification where each data example
may belong to more than one class.

29



Classification examples

Medical diagnosis from MRI: 2 classes.

MNIST digits: 10 classes.

Full Optical Character Regonition: 100s of classes.

ImageNet challenge: 21,000 classes.

Running example today: Email Spam Classification.

30



Classification

Classification can (and often is) solved using the same
loss-minimization framework we saw for regression.

We won't see that today! We're going to use classification as a
window into another way of thinking about machine learning.

Will give an interesting new justifications for tools like
regularization. Will also give us an approach for generative ML.

Rest of Today: ML from a Probabilistic Modeling/Bayesian
Perspective.

31



Probabilistic modeling

In a Bayesian or Probabilistic approach to machine learning we

always start by conjecturing a
probabilistic model

that plausibly could have generated our data.

e The model guides how we make predictions.

e The model typically has unknown parameters 6 and we try to
find the most reasonable parameters based on observed data
(more on this later in lecture).

32



Probabilistic modeling

Typically we try to keep things simple!

33



Probabilistic modeling

Exercise: Come up with a probabilistic model for the following
data set (x1,¥1),- -, (Xn, ¥n)-

e For n NYC apartments: each x; is the size of the apartment
in square feet. Each y; is the monthly rent in dollars.

What are the unknown parameters of your model. What would be
a guess for their values? How would you confirm or refine this

guess using data?

34



Probabilistic modeling

Dataset: (x1,)1),- .-, (Xn, ¥n)

Description: For n NYC apartments: each x; is the size of the
apartment in square feet. Each y; is the monthly rent in dollars.

Model:

85



Probabilistic modeling

Dataset: (x1,)1),- .-, (Xn, ¥n)

Description: For n students: each x; € {Fresh., Soph., Jun., Sen.}
indicating class year. Each y; € {0, 1} with zero indicating the
student has not taken machine learning, one indicating they have.

Model:

36



Naive bayes classifier

Goal:

e Build a probabilistic model for a binary classification problem.
e Estimate parameters of the model.

e From the model derive a classification rule for future
predictions (the Naive Bayes Classifier).

37



Spam prediction

feature ML
prediction

extraction bag-of-words
@ s [7[0[1]7[7]0]0]0J0]0[0]T[7][7]0] memmmmmp O (safe)

@ mmmmmm) [1]0[0[0[1[0[7[0[0[1]0[0[0[0[0] =) 1 (spam)

@ mmmmmm) [7]0[0]0[0[T[1]7]0]0]0]0]0]0[0] wemmmmdp O (safe)

@ mmmmmm) [7]0]0]0[0[1]0]0[7][0]7[0]0[0[0] =) O (safe)

@ ) [T[0[0]0[1[0]T[O[10]0[T[10]0] wemmmmp 1 (spam)

Both target labels and data vectors are binary.
38



Email model

Let's create a model that generates spam and non-spam emails.
Observation: Since bag-of-words features don't care about word
order, our model does not need to either.

e Common approach: assign a probability p; € [0, 1] to word i.
Set x; = 1 with probability p;, x; = 0 with probability 1 — p;.

Pthe = Pcalendar = Ptoothbrush =

39



Email model

Q_ toothbrush X ®actver (D @ @
Mail | Conversations | Spaces From ~ | ((anytime ~ | Has attachment | (o ~ | Exclude Promotions | (‘1sunread | Advanced: >

o- ¢ 1-170f 17 m -

O % » AmazonMarketplace inbox. akbar, willyou rate your transaction at Amazon.com? - Image" align Unbserbe. @ B & O
Amazon.com inbox Your Amazon.com order of “mopio Futon Sofa Bed... and 10 more items. - Amazon.com Order Confir sep10
Amazon.com inbx The Labor Day Sale is here - nas Colgate Toothbrush Limited time deal -35% $7.75 List Price: $11.99. Aug26
Instacart inbax. Your Instacart order receipt - Thanks for ordering from Instacart! Your order from CVS® was delivered Mays
Amazon.com Inbox. Up to 40% off last-minute gifts - cl_5_3_manu img_b Electric toothbrushes Give them (or you) the 1223
Instacart inbox. = You left an item behind... - = You left an item behind... %6 @import url(“https:/inks.customers.. 2
Amazon.ca inbox. Shop epic Black Friday deals - Rechargeable Electric Toothbrush, White, HXG17/01 by Philips Sonic. 2423
Amazon.com Reviews nbox. akbar, did 'ALIVER Nail Polish Remover' meet your expectations? Review it on Amazon - 2CE07 Tonarzs
Amazon.com Reviews nbox. akbar, did 'FACEMADE Nail Clippers Set’ meet your expectations? Review it on Amazon - 2050. 10423
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UNHCR Canada inbox. Last chance to give more than a gift - gift of toothbrushes, toothpaste, towels, soap and jerry cans to. 122222
Uber Eats inbox Running low on essentials? - Get $12 off a $25+ order of hand soap, toothbrushes, and more 2
Amazon.ca nbox. Deals have landed for Cyber Monday! - Sonicare Electric Toothbrushes & Ar. htps:/wviw.amazon wann

Simon Fraser Dental Inbox. Referral Prize - complimentary el

ic toothbrush. Refer A Friend & Receive A FREE

B Vitality Re. 4n8n8
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Email model

How can we make this model richer when we take spam into

account?

e Different words tend to be more or less frequent in spam or

regular emails.

Not Spam

Pwon =
Ps =

Pstudent =

Spam

Pwon =
Ps =

Pstudent =
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Probabilistic model for email

Probabilistic model for (bag-of-words, label) pair (x, y):

e Set y = 0 with probability pg, y = 1 with probability
p1=1— po.
e po is probability an email is not spam (e.g. 99%).
e p; is probability an email is spam (e.g. 1%).
o If y =0, for each i, set x; = 1 with prob. pjo.
e If y =1, for each i, set x; = 1 with prob. pj;.

Unknown model parameters:

° po’pl:
® P10, P20, - - - Pdo, one for each of the d vocabulary words.

® pi1, P21, - - - Pd1, one for each of the d vocabulary words.

How would you estimate these parameters?

42



Parameter estimation

Reasonable way to set parameters:
e Set pp and p; to the empirical fraction of not spam/spam
emails.

e For each word i, set p;jp to the empirical probability word i
appears in a non-spam email.

e For each word i, set pj; to the empirical probability word i
appears in a spam email.

Estimating these parameters from previous data examples is
the only “training” we will do.
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Done with modeling
on to prediction



Probability review

e Probability: p(x) — the probability event x happens.

e Joint probability: p(x,y) — the probability that event x and
event y happen.

e Conditional Probability p(x | y) — the probability x happens
given that y happens.

p(xly) =

44



Bayes theorem/rule

Proof:

45



Classification rule

), choose the label y € {0,1} which
is most likely given the data. Recall w =[0,0,1,...,1,0].

Given unlabeled input (w,

Classification rule: maximum a posterior (MAP) estimate.

Step 1. Compute:

e p(y =0|w): prob. y =0 given observed data vector w.

e p(y =1]|w): prob. y =1 given observed data vector w.

Step 2. Output: 0 or 1 depending on which probability is larger.

p(y =0 | w) and p(y = 1| w) are called posterior probabilities.
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Evaluating the posterior

How to compute the posterior? Bayes rule!

p(y =0 | w) = p(w |y Z(al))P(y =0) (1)
posterior — likelihood x prior 2)

evidence

e Prior: Probability in class O prior to seeing any data.

e Posterior: Probability in class O after seeing the data.

47



Evaluating the posterior

Goal is to determine which is larger:

p(w |y =0)p(y =0)

1 w) = Py =1)p(y =1)
ply =1|w) o(w)

e We can ignore the evidence p(w) since it is the same for both
sides!

e p(y =0) and p(y = 1) already known (computed from
training data). These are our computed parameters pg, p;.

e pwly=0)=7pw|y=1)=7

48



Evaluating the posterior

Consider the example w = [0,1,1,0,0,0,1,0].

Recall that, under our model, index i is 1 with probability p;o if we
are not spam, and 1 with probability p;; if we are spam .

p(w|y=0)=
pw|y=1)=

49



Final Naive Bayes Classifier

Training/Modeling: Use existing data to compute:

e pop=p(y=0),p1=ply=1)
e For all i compute:
e pio=p(xi=1|y=0)and (1—pio)=p(xi=0|y=0)
e pr=pxi=1|y=1)and (1 -pa)=p(x;=0|y=1)
Prediction:

e For new input w:
e Compute p(w | y = 0)
e Compute p(w | y =1)
e Return

[T, p(
[T; p(

wi |y =0)
wi |y =

1

argmax[p(w |y =0)-p(y=0),p(w|y=1)-p(y=1).
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Other applications of
the bayesian perspective



Bayesian regression

The Bayesian view offers an interesting alternative perspective on
many machine learning techniques.

Example: Linear Regression.
Probabilistic model:

y={(x,8)+n

where the 7 drawn from N(0,0?) is random Gaussian noise.

L L

The symbol ~ means “is proportional to". 51



Gaussian distribution refresher

Names for the same thing: Normal distribution, Gaussian

distribution, bell curve.

Parameterized by mean p and variance o2.

L S N —

7 is a continuous random variable, so it has a probability density
. . o
function p(n) with [ p(n)dn =1

52



Gaussian distribution refresher

The important thing to remember is that the the PDF falls off
exponentially as we move further from the mean.

L & K«

The normalizing constant in front 1/2, etc. don't matter so much.
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Quick check

Example: Linear Regression.

Probabilistic model:

y=(x,8)+n

where the 7 drawn from N(0,02) is random Gaussian noise. The
noise is independent for different inputs x1, ..., Xp.
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Bayesian regression

How should we select 3 for our model?

Also use a Bayesian approach!

Choose 3 to maximize:

Pr(X,y | B)Pr(B) likelihood x prior
Pr(X,y) B evidence

posterior = Pr(3 | X,y) =

In this case, we don't have a prior — no values of 3 are inherently
more likely than others.

Choose 3 to maximize just the likelihood:

Pr(X,y | B)Pe{8) likelihood x prier
Pr(X.y) B evidenee

This is called the maximum likelihood estimate.
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Fixed design linear regression

Often we think of X as fixed and deterministic, and only y is
generated at random in the model. This is called the fixed design
setting. Can also consider a randomized design setting, but it is

slightly more complicated.

In the fixed design setting our task of maximizing Pr(X,y | 3)

simplifies to maximizing

maxPr(y | 6)
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Maximum likelihood estimate

Data:
- »
x=| g |12
U Yn

Model: y; = (x;, 8) + n; where p(y; = z) ~ e~*/>"" and
M1, ...,MNn are independent.

Pr(y [ B) ~
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Log likelihood

Easier to work with the log likelihood:

argmax Pr(X,y | B) = arg maxl_[e_(y"_<"""3>)2/2"2
A i=1

= arg max log (H e—(y,-—<x,-,ﬁ>)2/202>
B

i=1
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Maximum likelihood estimator

Conclusion: Choose 3 to minimize:

n

> i — (xi,8) =y — XBl3.

i=1

This is a completely different justification for squared loss!

Minimizing the ¢ loss is optimal in a certain sense when you
assume your data follows a linear model with i.i.d. Gaussian noise.
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Bayesian regression

If we had modeled our noise 7 as Laplace noise, we would have

found that minimizing ||y — X3||1 was optimal.

os — Laplace
-~ Normal

0.2

0.1

[y
=3 -2 -1 0 1 2

Laplace noise has “heavier tails”, meaning that it results in more

outliers.

This is a completely different justification for /; loss.
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Bayesian regularization

We can add another layer of probabilistic modeling by also
assuming 3 is random and comes from some distribution, which
encodes our prior belief on what the parameters are.

Maximum a posteriori (MAP estimation):

Pr(X.y | B) Pr(8)

Assume values in 8 = [f1, ..., B4] come from some distribution.

e Common model: Each 3; drawn from N(0,~2), i.e. normally
distributed, independent.

e Encodes a belief that we are unlikely to see models with very
large coefficients.
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Bayesian regularization

Goal: choose 3 to maximize:

Pr(B] X,y) = T LB

e We can still ignore the “evidence” term Pr(X,y) since it is a
constant that does not depend on 3.

e Pr(B) = Pr(51) - Pr(B2) - ... Pr(Bq)
. Pr(B) ~
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Bayesian regularization

Easier to work with the log likelihood:

argmaxPr(X,y | B) - Pr(B)
B

— arg max H g bl H e~ (B /27
=1 =
& d
- arg[r;naxz —(yi — <Xi75>)2/202 + Z _(ﬁ’.)Z/z,yz
=t i=1
n 02 d
= arg min Z(y (xi, 8 72
B4 72 P

Choose 3 to minimize |ly — XB3||3 + %;H,BH%
Completely different justification for ridge regularization!
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Bayesian regularization

Test your intuition: What modeling assumption justifies LASSO
regularization: min [ly — XB||5 + A[|8][1?
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