
CS-GY 6923: Lecture 6

Gradient Descent + Stochastic Gradient

Descent

NYU Tandon School of Engineering, Akbar Rafiey
Slides by Prof. Christopher Musco

1



Logistic regression

Goal: Minimize the logistic loss:

L(β) = −
n∑

i=1

yi log(h(β
Txi )) + (1− yi ) log(1− h(βTxi ))

I.e. find β∗ = argmin L(β). How should we do this?

2



Logistic regression

Set all partial derivatives to 0! Recall that ∇L(β) is the length d

vector containing all partial derivatives evaluated at β:

∇L(β) =


∂L
∂β1
∂L
∂β2
...
∂L
∂βd



3



Logistic regression gradient

L(β) = −
n∑

i=1

yi log(h(β
Txi )) + (1− yi ) log(1− h(βTxi ))

Let X ∈ Rd×n be our data matrix with x1, . . . , xn ∈ Rd as rows.

Let y = [y1, . . . , yn]. A calculation gives:

∇L(β) = XT (h(Xβ)− y)

where h(Xβ) = 1
1+e−Xβ . Here all operations are entrywise. I.e in

Python you would compute:

4



Logistic regression gradient

To find β minimizing L(β) we typically start by finding a β where:

∇L(β) = XT (h(Xβ)− y) = 0

• In contrast to what we saw when minimizing the squared loss

for linear regression, there’s no simple closed form expression

for such a β!

• This is the typical situation when minimizing loss in machine

learning. (linear regression was a lucky exception.)

• Main question: How do we minimize a loss function L(β)

when we can’t explicitly compute where it’s gradient is 0?

5



Minimizing loss functions

Always an option: Brute-force search. Test our many possible

values for β and just see which gives the smallest value of L(β).

• As we saw on Lab 1, this actually works okay for

low-dimensional problems (e.g. when β has 1 or 2 entries).

• Problem: Super computationally expensive in

high-dimension. For β ∈ Rd , run time grows as:

6



Minimizing loss functions

Much Better idea. Some sort of guided search for a good of β.

• Start with some β(0), and at each step try to change β

slightly to reduce L(β).

• Hopefully find an approximate minimizer for L(β) much more

quickly than brute-force search.

• Concrete goal: Find β with

L(β) < min
β

L(β) + ϵ

for some small error term ϵ.

7



Gradient descent

Gradient descent: A greedy search algorithm for minimizing

functions of multiple variables (including loss functions) that often

works amazingly well.

The single most important computational tool in machine learning.

And it’s remarkable simple + easy to implement.

8



Optimization algorithms

Just one method in a huge class of algorithms for numerical

optimization. All of these methods are important in ML.

9



First order optimization

First order oracle model: Given a function L to minimize,

assume we can:

• Function oracle: Evaluate L(β) for any β.

• Gradient oracle: Evaluate ∇L(β) for any β.

These are very general assumptions. Gradient descent will not use

any other information about the loss function L when trying to find

a β which minimizes L.

10



Gradient descent

Basic Gradient descent algorithm:

• Choose starting point β(0).

• For i = 1, . . . ,T :

• β(i+1) = β(i) − η∇L(β(i))

• Return β(T ).

η > 0 is a step-size parameter. Also called the learning rate.

Why does this method work?

First observation: if we actually reach the minimizer β∗ then we

stop.

11



Intuition

Consider a 1-dimensional loss function. I.e. where β is just a single

value. Our update step is β(i+1) = β(i) − ηL′(β(i))

12



Gradient descent in 1D

Mathematical way of thinking about it:

By definition, L′(β) = limt→0
L(β+t)−L(β)

t . So for small values of t,

we expect that:

L(β + t)− L(β) ≈ t · L′(β).

We want L(β + t) to be smaller than L(β), so we want t · L′(β) to
be negative.

This can be achieved by choosing t = −η · L′(β).

β(i+1) = β(i) − ηL′(β(i))

13



Directional derivatives

For high dimensional functions (β ∈ Rd), our update involves a

vector v ∈ Rd . At each step:

β ← β + v.

Question: When v is small, what’s an approximation for

L(β + v)− L(β)?

L(β + v)− L(β) ≈

14



Directional derivatives

We have

L(β + v)− L(β) ≈ ∂L

∂β1
v1 +

∂L

∂β2
v2 + . . .+

∂L

∂βd
vd

= ⟨∇L(β), v⟩.

How should we choose v so that L(β + v) < L(β)?

0Formally, you might remember that we can define the directional derivative

of a multivariate function: DvL(β) = limt→0
L(β+tv)−L(β)

t
.

15



Steepest descent

Claim (Gradient descent = Steepest descent1)

−∇L(β)
∥∇L(β)∥2 = argminv,∥v∥2=1⟨∇L(β), v⟩

Recall: For two vectors a,b,

⟨a,b⟩ = ∥a∥2∥b∥2 · cos(θ)

1We could have restricted v using a different norm. E.g. ∥v∥1 ≤ 1 or

∥v∥∞ = 1. These choices lead to variants of generalized steepest descent..

16



Visualizing in 2D

17



Steepest descent

Claim (Gradient descent = Steepest descent)

−∇L(β)
∥∇L(β)∥2 = argminv,∥v∥2=1⟨∇L(β), v⟩

18



Gradient descent

Basic Gradient descent (GD) algorithm:

• Choose starting point β(0).

• For i = 1, . . . ,T :

• β(i+1) = β(i) − η∇L(β(i))

• Return β(t).

• Theoretical questions: Does gradient descent always

converge to the minimum of the loss function L? Can you

prove how quickly?

• Practical questions: How to choose η? Any other

modifications needed for good practical performance?

19



Basic claim

• For sufficiently small η, every step of GD either

1. Decreases the function value.

2. Gets stuck because the gradient term equals 0

Claim

For sufficiently small η and a sufficiently large number of

iterations T , gradient descent will converge to a local minimum

or stationary point of the loss function β̃
∗
. I.e. with

∇L(β̃∗
) = 0.

20



Basic claim

You can have stationary points that are not minima (local maxima,

saddle points). In practice, always converge to local minimum.

Very unlikely to land precisely on another stationary point and get

stuck. Non-minimal stationary points are “unstable”.

21



Convex function

For a broad class of functions, GD converges to global

minima.

Definition (Convex)

A function L is convex iff for any β1,β2, λ ∈ [0, 1]:

(1− λ) · L (β1) + λ · L(β2) ≥ L ((1− λ) · β1 + λ · β2)

22



Convex function

In words: A function is convex if a line between any two points on

the function lies above the function. Captures the notion that a

function looks like a bowl.

This function is not convex. 23



Convex function

In words: A function is convex if a line between any two points on

the function lies above the function. Captures the notion that a

function looks like a bowl.

This function is convex.

24



Convex function

In words: A function is convex if a line between any two points on

the function lies above the function. Captures the notion that a

function looks like a bowl.

This function is not convex.

25



Convergence of gradient descent

What functions are convex?

• Least squares loss for linear regression.

• ℓ1 loss for linear regression.

• Either of these with and ℓ1 or ℓ2 regularization penalty.

• Logistic regression! Logistic regression with regularization.

• Many other models in machine leaning.

26



Non-convex

What functions in machine learning are not convex? Loss

functions involving neural networks, matrix completion problems,

mixture models, many more.

Vary in how “bad” the non-convexity is. For example, some matrix

factorization problems are non-convex but still only have global

minima.

27



Convexity warm up

Prove that L(β) = β2 is convex.

To show: For any β1, β2, λ ∈ [0, 1],

λL(β1) + (1− λ)L(β2) ≥ L(λ · β1 + (1− λ) · β2)

AM-GM Inequality:

28



Convexity warm up

Prove that L(β) = β2 is convex.

To show: For any β1, β2, λ ∈ [0, 1],

λL(β1) + (1− λ)L(β2) ≥ L(λ · β1 + (1− λ) · β2)

AM-GM Inequality:

29



Convexity warm up

Trick for differentiable single variable functions: L(β) is

convex if and only if L′′(β) ≥ 0 for all β.

30



Convexity of least squares regression loss

Prove that L(β) = ∥Xβ − y∥22 is convex. I.e. that:

∥X(λβ1 + (1− λ)β1)− y∥22 ≤ λ∥Xβ1 − y∥22 + (1− λ)∥Xβ2 − y∥22

Left hand side:

∥X(λβ1 + (1− λ)β1)− y∥22 = λ2βT
1 X

TXβ1 + 2λ(1− λ)βT
1 X

TXβ2 + (1− λ)2βT
2 X

TXβ2

+ yTy − 2yT (λXβ1 + (1− λ)λXβ2)

Right hand side:

λ∥Xβ1 − y∥22 + (1− λ)∥Xβ2 − y∥22 = λβT
1 X

TXβ1 + λyTy − 2yT (λXβ1) + (1− λ)βT
2 X

TXβ2

+ (1− λ)yTy − 2yT ((1− λ)Xβ2)

Need to show:

λ2βT
1 X

TXβ1 + 2λ(1− λ)βT
1 X

TXβ2 + (1− λ)2βT
2 X

TXβ2 ≤ λβT
1 X

TXβ1 + (1− λ)βT
2 X

TXβ2

31



Convexity of least squares regression loss

Vector version of AM-GM:

∥a− b∥22 = aTa− 2aTb+ bTb ≥ 0

2aTb ≤ aTa+ bTb

λ2βT
1 X

TXβ1 + 2λ(1− λ)βT
1 X

TXβ2 + (1− λ)2βT
2 X

TXβ2

≤ λ2βT
1 X

TXβ1 + λ(1− λ)(βT
1 X

TXβ1 + βT
2 X

TXβ2) + (1− λ)2βT
2 X

TXβ2

= λβT
1 X

TXβ1 + (1− λ)βT
2 X

TXβ2

Good exercise: Prove that L(β) = α∥β∥22 is convex.

32



Rate of convergence for convex functions

Claim: For any convex function L(β), gradient descent with

sufficiently small step size η converges to the global minimum β∗

of L.

• Choose starting point β(0).

• For i = 1, . . . ,T :

• β(i+1) = β(i) − η∇L(β(i))

• Return β(t).

33



Rate of convergence for convex functions

We care about how fast gradient descent and related methods

converge, not just that they do converge.

• Bounding iteration complexity requires placing some

assumptions on L(β).

• Stronger assumptions lead to better bounds on the

convergence.

Understanding these assumptions can help us design faster variants

of gradient descent (there are many!).

34



Convergence analysis for convex functions

Assume:

• L is convex.

• Lipschitz function: for all β, ∥∇L(β)∥2 ≤ G .

• Starting radius: ∥β∗ − β(0)∥2 ≤ R.

Gradient descent:

• Choose number of steps T .

• Starting point β(0). E.g. β(0) = 0.

• η = R
G
√
T

• For i = 0, . . . ,T :

• β(i+1) = β(i) − η∇L(β(i))

• Return β̂ = argminβ(i) L(β).

35



Gradient descent analysis

Claim (GD Convergence Bound)

If T ≥ R2G2

ϵ2
, then L(β̂) ≤ L(β∗) + ϵ.

Proof is made tricky by the fact that L(β(i)) does not improve

monotonically. We can “overshoot” the minimum. This is why the

step size needs to depend on 1/G . 36



Gradient descent

Definition (Alternative Convexity Definition)

A function L is convex if and only if for any β,α:

L(α)− L(β) ≥ ∇L(β)T (α− β)

37



Gradient descent analysis

Claim (GD Convergence Bound)

If T ≥ R2G 2

ϵ2 and η = R
G
√
T
, then L(β̂) ≤ L(β∗) + ϵ.

Claim 1: For all i = 0, . . . ,T ,

L(β(i))− L(β∗) ≤ ∥β
(i) − β∗∥22 − ∥β

(i+1) − β∗∥22
2η

+
ηG 2

2

“If you are far away, you make progress towards the optimum”.

Claim 1(a): For all i = 0, . . . ,T ,

∇L(β(i))T (β(i) − β∗) ≤ ∥β
(i) − β∗∥22 − ∥β

(i+1) − β∗∥22
2η

+
ηG 2

2

Claim 1 follows from Claim 1(a) by our new definition of convexity.

38



Gradient descent analysis

Claim (GD Convergence Bound)

If T ≥ R2G 2

ϵ2 and η = R
G
√
T
, then L(β̂) ≤ L(β∗) + ϵ.

Claim 1(a): For all i = 0, . . . ,T , 2

∇L(β(i))T (β(i) − β∗) ≤ ∥β
(i) − β∗∥22 − ∥β

(i+1) − β∗∥22
2η

+
ηG 2

2

2Recall that ∥x− y∥22 = ∥x∥22 − 2xTy + ∥y∥22.

39



Gradient descent analysis

Claim (GD Convergence Bound)

If T ≥ R2G2

ϵ2
and η = R

G
√
T
, then L(β̂) ≤ L(β∗) + ϵ.

Claim 1: For all i = 0, . . . ,T ,

L(β(i))− L(β∗) ≤ ∥β
(i) − β∗∥22 − ∥β(i+1) − β∗∥22

2η
+

ηG 2

2

Telescoping sum:

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ ∥β

(0) − β∗∥22 − ∥β(1) − β∗∥22
2η

+
ηG 2

2

+
∥β(1) − β∗∥22 − ∥β(2) − β∗∥22

2η
+

ηG 2

2

+
∥β(2) − β∗∥22 − ∥β(3) − β∗∥22

2η
+

ηG 2

2

...

+
∥β(T−1) − β∗∥22 − ∥β(T ) − β∗∥22

2η
+

ηG 2

2

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ ∥β

(0) − β∗∥22 − ∥β(T ) − β∗∥22
2η

+
TηG 2

2

1

T

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ R2

2Tη
+

ηG 2

2

40



Gradient descent analysis

Claim (GD Convergence Bound)

If T ≥ R2G 2

ϵ2 and η = R
G
√
T
, then L(β̂) ≤ L(β∗) + ϵ.

Telescoping sum:

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ ∥β

(0) − β∗∥22 − ∥β
(T ) − β∗∥22

2η
+

TηG 2

2

1

T

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ R2

2Tη
+

ηG 2

2

41



Gradient descent analysis

Claim (GD Convergence Bound)

If T ≥ R2G2

ϵ2
and η = R

G
√
T
, then L(β̂) ≤ L(β∗) + ϵ.

Final step:

1

T

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ ϵ[

1

T

T−1∑
i=0

L(β(i))

]
− L(β∗) ≤ ϵ

We always have that mini L(β
(i)) ≤ 1

T

∑T−1
i=0 L(β(i)), so this is

what we return:

L(β̂) = min
i∈1,...,T

L(β(i)) ≤ L(β∗) + ϵ.

42



Setting learning rate/step size

Gradient descent algorithm for minimizing L(β):

• Choose arbitrary starting point β(0).

• For i = 1, . . . ,T :

• β(i+1) = β(i) − η∇L(β(i))

• Return β(t).

In practice we don’t set the step-size/learning rate parameter

η = R
G
√
T
, since we typically don’t know these parameters. The

above analysis can also be loose for many functions.

η needs to be chosen sufficiently small for gradient descent to

converge, but too small will slow down the algorithm.

43



Learning rate

Precision in choosing the learning rate η is not super important,

but we do need to get it to the right order of magnitude.

44



Learning rate

“Overshooting” can be a problem if you choose the step-size too

high.

Often a good idea to plot the entire optimization curve for

diagnosing what’s going on.

We will have a lab on gradient descent optimization after the

midterm we’re you’ll get practice doing this.

45



Exponential grid search

Just as in regularization, search over a grid of possible parameters:

η = [2−5, 2−4, 2−3, . . . , 29, 210].

Or tune by hand based on the optimization curve.

46



Backtracking line search/armijo rule

Recall: If we set β(i+1) ← β(i) − η∇L(β(i)) then:

L(β(i+1)) ≈ L(β(i))− η
〈
∇L(β(i)),∇L(β(i))

〉
= L(β(i))− η∥∇L(β(i))∥22.

Approximation holds true for small η. If it holds, error

monotonically decreases.
47



Backtracking line search/armijo rule

Gradient descent with backtracking line search:

• Choose arbitrary starting point β.

• Choose starting step size η.

• Choose τ, c < 1 (typically both c = 1/2 and τ = 1/2)

• For i = 1, . . . ,T :

• β(new) = β − η∇L(β)
• If L(β(new)) ≤ L(β)− cη∇L(β)

• β ← β(new)

• η ← τ−1η

• Else

• η ← τη

Always decreases objective value, works very well in practice.

48



Backtracking line search/armijo rule

Gradient descent with backtracking line search:

Always decreases objective value, works very well in practice.

49



Complexity of gradient descent

Complexity of computing the gradient will depend on you loss

function.

Example 1: Let X ∈ Rn×d be a data matrix.

L(β) = ∥Xβ − y∥22 ∇L(β) = 2XT (Xβ − y)

• Runtime of closed form solution β∗ = (XTX)−1XTy:

• Runtime of one GD step:
50



Complexity of gradient descent

Complexity of computing the gradient will depend on you loss

function.

Example 1: Let X ∈ Rn×d be a data matrix.

L(β) = −
n∑

i=1

yi log(h(β
Txi )) + (1− yi ) log(1− h(βTxi ))

∇L(β) = XT (h(Xβ)− y)

• No closed form solution.

• Runtime of one GD step:

51



Complexity of gradient descent

Frequently the complexity is O(nd) if you have n data-points and

d parameters in your model.

Not bad, but the dependence on n can be a lot! n might be on the

order of thousands, or millions.

52



Training neural networks

Stochastic Gradient Descent (SGD).

• Powerful randomized variant of gradient descent used to train

machine learning models when n is large and thus computing

a full gradient is expensive.

Applies to any loss with finite sum structure:

L(β) =
n∑

j=1

ℓ(β, xj , yj)

53



Stochastic gradient descent

Let Lj(β) denote ℓ(β, xj , yj).

Claim: If j ∈ 1, . . . , n is chosen uniformly at random. Then:

E [n · ∇Lj(β)] = ∇L(β).

∇Lj(β) is called a stochastic gradient.

54



Stochastic gradient descent

SGD iteration:

• Initialize β(0).

• For i = 0, . . . ,T − 1:

• Choose j uniformly at random.

• Compute stochastic gradient g = ∇Lj(β(i)).

• Update β(t+1) = β(t) − η · ng

Move in direction of steepest descent in expectation.

Cost of computing g is independent of n!

55



Complexity of stochastic gradient descent

Example: Let X ∈ Rn×d be a data matrix.

L(β) = ∥Xβ − y∥22 =
n∑

j=1

(yj − βTxj)
2

• Runtime of one SGD step:

56



Stochastic gradient descent

Gradient descent: Fewer iterations to converge, higher cost per

iteration.

Stochastic Gradient descent: More iterations to converge, lower

cost per iteration.

57



Stochastic gradient descent

Gradient descent: Fewer iterations to converge, higher cost per

iteration.

Stochastic Gradient descent: More iterations to converge, lower

cost per iteration.

58



Stochastic gradient descent in practice

Typical implementation: Shuffled Gradient Descent.

Instead of choosing j independently at random for each iteration,

randomly permute (shuffle) data and set j = 1, . . . , n. After every

n iterations, reshuffle data and repeat.

• Relatively similar convergence behavior to standard SGD.

• Important term: one epoch denotes one pass over all

training examples: j = 1, . . . , j = n.

• Convergence rates for training ML models are often discussed

in terms of epochs instead of iterations.

59



Stochastic gradient descent in practice

Practical Modification: Mini-batch Gradient Descent.

Observe that for any batch size s,

E

[
n

s

s∑
i=1

∇Lji (β)

]
= ∇L(β).

if j1, . . . , js are chosen independently and uniformly at random

from 1, . . . , n.

Instead of computing a full stochastic gradient, compute the

average gradient of a small random set (a mini-batch) of training

data examples.

Question: Why might we want to do this?

60



Mini-batch gradient descent

• Overall faster convergence (fewer iterations needed).

61



Midterm

• 1.5 hours long, but should take less time. Here in the

classroom.

• You can bring in a single, 2-sided cheat sheet with terms,

definitions, etc.

• Mix of short answer questions (true/false, matching, etc.) and

questions similar to the homework but easier.

• Covers everything Lec 01 to Lec 05.

62


