
CS-GY 6923: Lecture 8

Kernel Methods, Support Vector Machines

NYU Tandon School of Engineering, Akbar Rafiey
Slides by Prof. Christopher Musco

1

Non-linear methods

• Previous methods studied (regression, logistic regression) are

considered linear methods.

• They make predictions based on ⟨x,β⟩ – i.e. based on

weighted sums of features.

• Next part of the course: we move on to non-linear methods.

Specifically, kernel methods and neural networks.

• Both are very closely related to feature transformations, which

was one technique we saw for using linear methods to learn

non-linear concepts.

2

Recall: k-nearest neighbor method

k-NN algorithm: a simple but powerful baseline for classification.

Training data: (x1, y1), . . . , (xn, yn) where y1, . . . , yn ∈ {1, . . . , q}.

Classification algorithm:

Given new input xnew ,

• Compute sim(xnew , x1), . . . , sim(xnew , xn).1

• Let xj1 , . . . , xjk be the training data vectors with highest

similarity to xnew .

• Predict ynew as majority(yj1 , . . . , yjk).

1sim(xnew , xi) is any chosen similarity function, like 1− ∥xnew − xi∥2.

3

k-nearest neighbor method

• Smaller k, more complex classification function.

• Larger k , more robust to noisy labels.

Works remarkably well for many datasets.

4

MNIST image data

Especially good for large datasets with lots of repetition. Works

well on MNIST for example:

≈ 95% Accuracy out-of-the-box.2

Let’s look into this example a bit more...

2Can be improved to 99.5% with a fancy similarity function!
5

MNIST image data

Each pixel is number from [0, 1]. 0 is black, 1 is white. Represent

28× 28 matrix of pixel values as a flattened vector.

6

Inner product similarity

Given data vectors x,w ∈ Rd , the inner product ⟨x,w⟩ is a natural

similarity measure.

⟨x,w⟩ =
d∑

i=1

xiwi = cos(θ)∥x∥2∥w∥2.

Also called “cosine similarity”.
7

Inner product similarity

Connection to Euclidean (ℓ2) Distance:

∥x−w∥22 = ∥x∥22 + ∥w∥22 − 2⟨x,w⟩

If all data vectors has the same norm, the pair of vectors with

largest inner product is the pair with smallest Euclidean distance.

8

Inner product for mnist

Inner product between MNIST digits:

⟨x,w⟩ =
28∑
i=1

28∑
j=1

matx[i , j] · matw[i , j].

Inner product similarity is higher when the images have large pixel

values (close to 1) in the same locations. I.e. when they have a lot

of overlapping white/light gray pixels.

9

Inner product for mnist

Visualizing the inner product between two images:

Images with high inner product have a lot of overlap.

10

k-NN algorithm on MNIST

Most similar images during k-NN search, k = 9:

11

k-NN for other images

Does not work as well for less standardized classes of images:

CIFAR 10 Images

Even after scaling to have same size, converting to separate RGB

channels, etc. something as simple as k-NN won’t work.

12

Another view on logistic regression

One-vs.-all or Multiclass Cross-entropy Classification with

Logistic Regression:

• Learn q classifiers with parameters β(1),β(2), . . . ,β(q).

• Given xnew compute ⟨xnew ,β(1)⟩, . . . , ⟨xnew ,β(q)⟩
• Predict class ynew = argmaxi ⟨xnew ,β(i)⟩.

If each x is a vector with 28× 28 = 784 entries than each β(i) also

has 784 entries. Each parameter vector can be viewed as a 28× 28

image.

13

Matched filter

Visualizing β(0), . . . ,β(9):

Logistic regression classification rule: For an input ,

compute inner product similarity with all weight matrices and

choose most similar one.

In contrast to k-NN, only need to compute similarity with 10 items

instead of n. 14

Diving into similarity

Often the inner product does not make sense as a similarity

measure between data vectors. Here’s an example (recall that

smaller inner product means less similar):

But clearly the first image is more similar.

Here’s a more realistic scenario. 15

Kernel functions: a new measure of similarity

A kernel function k(x, y) is simply a similarity measure between

data points.

k(x, y) =

large if x and y are similar.

close to 0 if x and y are different.

Example: The Radial Basis Function (RBF) kernel, aka the

Gaussian kernel:

k(x, y) = e−∥x−y∥22/σ2

for some scaling factor σ.

16

Kernel functions: a new measure of similarity

Lots of kernel functions involve transformations of ⟨x, y⟩ or
∥x− y∥2:

• Gaussian RBF Kernel: k(x, y) = e−∥x−y∥22/σ2

• Laplace Kernel: k(x, y) = e−∥x−y∥2/σ

• Polynomial Kernel: k(x, y) = (⟨x, y⟩+ 1)q.

But you can imagine much more complex similarity metrics.

17

How to use a kernel function?

For k-nearest neighbors, can easily replace inner product with

whatever similarity function you want.

For logistic regression, it is less clear how to do so.

18

How to use a kernel function?

Logistic Regression Loss:

L(β(1), . . . ,β(q)) = −
n∑

i=1

q∑
ℓ=1

1[yi = ℓ] · log e⟨β
(ℓ),xi ⟩∑q

j=1 e
⟨β(j),xi ⟩

Loss inherently involves inner product between each β(j) and each

data vector xi .

Solution: Only work with similarity metrics that can be expressed

as inner products.

19

Kernel functions from feature transformation

A positive semidefinite (PSD) kernel is any similarity function with

the following form:

k(x,w) = ϕ(x)Tϕ(w)

where ϕ : Rd → Rm is a some feature transformation function.

20

Kernel functions and feature transformation

Example: Degree 2 polynomial kernel, k(x,w) = (xTw + 1)2.

x =

x1x2
x3

 ϕ(x) =

1√
2x1√
2x2√
2x3
x21
x22
x23√
2x1x2√
2x1x3√
2x2x3

(xTw + 1)2 = (x1w1 + x2w2 + x3w3 + 1)2

= 1 + 2x1w1 + 2x2w2 + 2x3w3 + x21w
2
1 + x22w

2
2 + x23w

2
3

+ 2x1w1x2w2 + 2x1w1x3w3 + 2x2w2x3w3

= ϕ(x)Tϕ(w). 21

Kernel functions and feature transformation

Not all similarity metrics are positive semidefinite (PSD), but all of

the ones we saw earlier are:

• Gaussian RBF Kernel: k(x, y) = e−∥x−y∥22/σ2

• Laplace Kernel: k(x, y) = e−∥x−y∥2/σ

• Polynomial Kernel: k(x, y) = (⟨x, y⟩+ 1)q.

And there are many more...

22

Kernel functions and feature transformation

Feature transformations ⇐⇒ new similarity metrics.

To work with the similarity k(·, ·) in place of the inner product

⟨·, ·⟩, it suffices to replace every data point x1, . . . , xn by

ϕ(x1), . . . , ϕ(xn).

23

Kernel functions and feature transformation

There are two major issues with this:

• While ϕ(x) is sometimes simple and explicit. More often, it

is not. We might be able to show a kernel is PSD without

easily being able to write down ϕ(x).

• Transform dimension m is often very large: e.g. m = O(dq)

for a degree q polynomial kernel. For many kernels (e.g. the

Gaussian kernel) m is actually infinite.

So doing the feature transformation explicitly would have very high

computational cost. Ideally we would like algorithms that run in

better then O(∞) time.

24

Reparameterization trick

For simplicity, let’s just consider the binary cross entropy/logistic

regression loss:

−
n∑

j=1

yj log(h(Xβ)j) + (1− yj) log(1− h(Xβ)j)

where h(z) = 1
1+e−z .

25

Reparameterization trick

Reminder from linear algebra: Without loss of generality, can

assume that β lies in the row span of X.

So for any β ∈ Rd , there exists a vector α ∈ Rn such that:

Xβ = XXTα.

26

Reparameterization trick

Logistic Regression Equivalent Formulation: Given data matrix

X ∈ Rn×d and binary label vector y ∈ {0, 1}n for class i , find

α ∈ Rn to minimize the loss:

−
n∑

j=1

yj log(h(XX
Tα)j) + (1− yj) log(1− h(XXTα)j)

Can still be minimized via gradient descent:

∇L(α) = XXT (h(XXTα)− y).

27

Reparameterization trick

If we use a non-linear data transformation ϕ (corresponding to a

PSD kernel), then the loss is:

−
n∑

j=1

yj log(h(ϕ(X)ϕ(X)
Tα)j) + (1− yj) log(1− h(ϕ(X)ϕ(X)Tα)j)

28

kernel matrix

K = ϕ(X)ϕ(X)T is called the kernel Gram matrix.

29

Kernel trick

We never need to actually compute ϕ(x1), . . . , ϕ(xn) explicitly!

• For training we just need the kernel matrix K, which requires

computing k(xi , xj) for all i , j .

We can always work with a finite sized n × n matrix.

30

Kernel trick

Take away:

• Logistic regression can be combined with any positive

semidefinite kernel matrix, and the model can be trained in

time independent of the transform dimension m.

31

Kernel trick: prediction

Prediction:

• Prediction can also be done efficiently. For a new input xnew ,

we need to compute:

⟨ϕ(xnew),β⟩ = ⟨ϕ(xnew), ϕ(X)Tα⟩

= ⟨ϕ(xnew),
n∑

i=1

ϕ(xi)αi ⟩ =
n∑

i=1

αi ⟨ϕ(xnew), ϕ(xi)⟩.

Each term in the sum ⟨ϕ(xnew), ϕ(xi)⟩ = k(xnew , xi) can be

computed without explicit feature transformation.

32

Beyond the kernel trick

The kernel matrix K is still n × n though which is huge when the

size of the training set n is large. Has made the kernel trick less

appealing in some modern ML applications.

There is an inherent quadratic dependence on n in the

computational and space complexity of kernel methods.

• 10, 000 data points → runtime scales as ∼ 100, 000, 000, K

takes 800MB of space.

• 1, 000, 000 data points → runtime scales as ∼ 1012, K takes

8TB of space. 33

Beyond the kernel trick

Many algorithmic advances in recent years partially address this

computational challenge (random Fourier features methods,

Nystrom methods, etc.)

34

Kernel regression

The kernel trick can also be applied outside of classification. E.g.

to regression:

min
β

∥Xβ − y∥22 + λ∥β∥22 → min
α

∥XXTα− y∥22 + λ∥XTα∥22

Replace XXT by kernel matrix K during training.

Prediction:

ynew =
n∑

i=1

αi · k(xnew , xi).

Added benefit: Relatively numerically stable. E.g. is a much better

option for performing multivariate or even single variate polynomial

regression than direct feature expansion.

35

Kernel regression

We won’t study kernel regression in detail, but kernel regression

with non-linear kernels like e−∥x−y∥22 is a very important statistical

tool, especially when dealing with spatial or temporal data.

Also known as Gaussian Process (GP) Regression or Kriging.

36

Support Vector Machines

36

Today

Support Vector Machines (SVMs): Another algorithm for

finding linear classifiers which is (was?) as popular as logistic

regression.

• Can also be combined with kernels.

• Developed from a pretty different perspective.

• But final algorithm is not that different.

• Invented in 1963 by Alexey

Chervonenkis and Vladimir

Vapnik. Also founders of

VC-theory.

• First combined with non-linear

kernels in 1993.

37

SVM’s vs. logistic regression

For some reason, SVMs are more commonly associated with

non-linear kernels. For example, sklearn’s SVM classifier (called

SVC) has support for non-linear kernels built in by default. Its

logistic regression classifier does not.

• I believe this is mostly for historical reasons and connections

to theoretical machine learning.

• In the early 2000s SVMs where a “hot topic” in machine

learning and their popularity persists.

• It is not clear to me if they are better than logistic regression,

but honestly the jury is still out...

38

SVM’s vs. logistic regression

Next lab: Machina-a-machina comparison of SVMs vs. logistic

regression for a MNIST digit classification problem. Which

provides better accuracy? Which is faster to train?

39

Linearly separable data

We call a dataset with binary labels linearly separable if it can be

perfectly classified with a linear classifier:

This the realizable setting we discussed in the learning theory

lecture.

40

Linearly separable data

Formally, there exists a parameter β such that ⟨β, x⟩ > 0 for all x

in class 1 and ⟨β, x⟩ < 0 for all x in class 0.

Note that if we multiply β by any constant c , cβ gives the same

separating hyperplane because ⟨cβ, x⟩ = c⟨β, x⟩.

41

Linearly separable data

A data set might be linearly separable when using a

non-kernel/feature transformation even if it is not separable in the

original space.

This data is separable when using a degree-2 polynomial kernel. If

suffices for ϕ(x) to contain x21 and x22 .

42

Margin

When data is linearly separable, there are typically multiple valid

separating hyperplanes.

Question from Vapnik and Chervonenkis: Which

hyperplane/classification rule is best?

43

Margin

The margin m of a separating hyperplane is the minimum ℓ2

(Euclidean) distance between a point in the dataset and the

hyperplane.

m = min
i

∆i where ∆i =
|⟨xi ,β⟩|
∥β∥2

44

Margin

We have that xi = vi + ei where vi is parallel to β and ei is

perpendicular.

∆i = ∥vi∥2 = 1
∥vi∥2 · ⟨vi , vi ⟩ =

1
∥vi∥2 ·

∥vi∥2
∥β∥2 · |⟨vi ,βi ⟩| =

|⟨vi ,β⟩|
∥β∥2 .

Finally, we have that ⟨xi ,β⟩ = ⟨vi ,β⟩ because ⟨ei ,β⟩ = 0.

45

Support vector

A support vector is any data point xi such that |⟨xi ,β⟩|
∥β∥2 = m.

46

Hard-margin svm

A hard-margin support vector machine (SVM) classifier finds the

maximum margin (MM) linear classifier.

I.e. the separating hyperplane which maximizes the margin m.

47

margin

Denote the maximum margin by m∗.

m∗ = max
β

[
min

i∈1,...,n

|⟨xi ,β⟩|
∥β∥2

]
= max

β

[
min

i∈1,...,n

yi · ⟨xi ,β⟩
∥β∥2

]
where yi = −1, 1 depending on what class xi .

3

3Note that this is a different convention than the 0, 1 class labels we typically

use.

48

Hard-margin svm

Equivalent formulation:

m∗ = max
v:∥v∥2=1

[
min

i∈1,...,n
yi · ⟨xi , v⟩

]

1

m∗ = min
v:∥v∥2=1

c

c subject to c · yi · ⟨xi , v⟩ ≥ 1 for all i .

= min
v:∥v∥2=1

c

∥c · v∥2 subject to yi · ⟨xi , c · v⟩ ≥ 1 for all i .

49

Hard-margin svm

Equivalent formulation:

min
β

∥β∥22 subject to yi · ⟨xi ,β⟩ ≥ 1 for all i .

Under this formulation m = 1
∥β∥2 .

This is a constrained optimization problem. In particular, a

linearly constrained quadratic program, which is a type of problem

we have efficient optimization algorithms for.

50

Hard-margin svm

Hard-margin SVMs have a few critical issues in practice:

Data might not be linearly separable, in-which case the maximum

margin classifier is not even defined.

Less likely to be an issue when using a non-linear kernel. If K is full rank

then perfect separation is always possible. And typically it is, e.g. for an

RBF kernel or moderate degree polynomial kernel. 51

Hard-margin svm

Another critical issue in practice:

Hard-margin SVM classifiers are not robust.

52

Soft-margin svm

Solution: Allow the classifier to make some mistakes!

Hard margin objective:

min
β

∥β∥22 subject to yi · ⟨xi ,β⟩ ≥ 1 for all i .

Soft margin objective:

min
β

∥β∥22 + C
n∑

i=1

ϵi subject to yi · ⟨xi ,β⟩ ≥ 1− ϵi for all i .

where ϵi ≥ 0 is a non-negative “slack variable”. This is the

magnitude of the error made on example xi .

C ≥ 0 is a non-negative tuning parameter.

53

Soft-margin svm

Example of a non-separable problem:

54

Soft-margin svm

Recall that ∆i =
yi ·⟨xi ,β⟩
∥β∥2 .

Soft margin objective:

min
β

∥β∥22 + C
n∑

i=1

ϵi subject to yi · ⟨xi ,β⟩ ≥ 1− ϵi for all i .

55

Soft-margin svm

Recall that ∆i =
yi ·⟨xi ,β⟩
∥β∥2 .

Soft margin objective:

min
β

∥β∥22 + C
n∑

i=1

ϵi subject to
yi · ⟨xi ,β⟩

∥β∥2
≥ 1

∥β∥2
− ϵi

∥β∥2
for all i .

56

Soft-margin svm

Any xi with a non-zero ϵi is a support vector.

57

Effect of c

Soft margin objective:

min
β

∥β∥22 + C
n∑

i=1

ϵi .

• Large C means penalties are punished more in objective =⇒
smaller margin, less support vectors.

• Small C means penalties are punished less in objective =⇒
larger margin, more support vectors.

When data is linearly separable, as C → ∞ we will always get a

separating hyperplane. A smaller value of C might lead to a more

robust solution.

58

Effect of c

Example dataset:

59

effect of c

The classifier on the right is intuitively more robust. So for this

data, a smaller choice for C might make sense.

60

Dual formulation

Reformulation of soft-margin objective:

max
α

n∑
i=1

αi −
1

2

∑
i,j

yiyjαiαi ⟨xi , xj⟩ −
1

2C

n∑
i=1

α2
i

subject to αi ≥ 0,
n∑

i=1

αiyi = 0.

Obtained by taking the Lagrangian dual of the objective. Beyond the

scope of this class, but important for a few reasons:

• Objective only depends on inner products ⟨xi , xj⟩, which makes it

clear how to combine the soft-margin SVM with a kernel.

• Possible to prove that αi is only non-zero for the support

vectors. When classifying a new data point, only need to

compute inner products (or the non-linear kernel inner

product) with this subset of training vectors. This is not the

case for the logistic regression classifier.
61

Comparison to logistic regression

Some basic transformations of the soft-margin objective:

min
β

∥β∥22 + C
n∑

i=1

ϵi subject to yi · ⟨xi ,β⟩ ≥ 1− ϵi for all i .

min
β

∥β∥22 + C
n∑

i=1

max(0, 1− yi · ⟨xi ,β⟩).

min
β

λ∥β∥22 +
n∑

i=1

max(0, 1− yi · ⟨xi ,β⟩).

These are all equivalent. λ = 1/C is just another scaling

parameter.

62

Hinge loss

Hinge-loss: max(0, 1− yi · ⟨xi ,β⟩). Recall that yi ∈ {−1, 1}.

Soft-margin SVM:

min
β

[
n∑

i=1

max(0, 1− yi · ⟨xi ,β⟩) + λ∥β∥22

]
. (1)

63

Logistic loss

Recall the logistic loss for yi ∈ {0, 1}:

L(β) = −
n∑

i=1

yi log(h(⟨xi ,β⟩)) + (1− yi) log(1− h(⟨xi ,β⟩))

= −
n∑

i=1

yi log

(
1

1 + e−⟨xi ,β⟩

)
+ (1− yi) log

(
e−⟨xi ,β⟩

1 + e−⟨xi ,β⟩

)

= −
n∑

i=1

yi log

(
1

1 + e−⟨xi ,β⟩

)
+ (1− yi) log

(
1

1 + e⟨xi ,β⟩

)

64

Comparison of SVM to logistic regression

Compare this to the logistic regression loss reformulated for

yi ∈ {−1, 1}):
n∑

i=1

− log

(
1

1− e−yi ·⟨xi ,β⟩

)

65

Comparison to logistic regression

So, in the end, the function minimized when finding β for the

standard soft-margin SVM is very similar to the objective

function minimized when finding β using logistic regression with

ℓ2 regularization. Sort of...

Both functions can be optimized using first-order methods like

gradient descent. This is now a common choice for large problems.

66

Comparison to logistic regression

The jury is still out on how different these methods are...

• Work through Demo 6: demo mnist svm.ipynb.

• Lab 5 on SVM vs. Logistic Regression

67

