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Non-linear methods

• Previous methods studied (regression, logistic regression) are

considered linear methods.

• They make predictions based on ⟨x,β⟩ – i.e. based on

weighted sums of features.

• Next part of the course: we move on to non-linear methods.

Specifically, kernel methods and neural networks.

• Both are very closely related to feature transformations, which

was one technique we saw for using linear methods to learn

non-linear concepts.
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Recall: k-nearest neighbor method

k-NN algorithm: a simple but powerful baseline for classification.

Training data: (x1, y1), . . . , (xn, yn) where y1, . . . , yn ∈ {1, . . . , q}.

Classification algorithm:

Given new input xnew ,

• Compute sim(xnew , x1), . . . , sim(xnew , xn).1

• Let xj1 , . . . , xjk be the training data vectors with highest

similarity to xnew .

• Predict ynew as majority(yj1 , . . . , yjk ).

1sim(xnew , xi ) is any chosen similarity function, like 1− ∥xnew − xi∥2.
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k-nearest neighbor method

• Smaller k, more complex classification function.

• Larger k , more robust to noisy labels.

Works remarkably well for many datasets.
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MNIST image data

Especially good for large datasets with lots of repetition. Works

well on MNIST for example:

≈ 95% Accuracy out-of-the-box.2

Let’s look into this example a bit more...

2Can be improved to 99.5% with a fancy similarity function!
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MNIST image data

Each pixel is number from [0, 1]. 0 is black, 1 is white. Represent

28× 28 matrix of pixel values as a flattened vector.
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Inner product similarity

Given data vectors x,w ∈ Rd , the inner product ⟨x,w⟩ is a natural

similarity measure.

⟨x,w⟩ =
d∑

i=1

xiwi = cos(θ)∥x∥2∥w∥2.

Also called “cosine similarity”.
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Inner product similarity

Connection to Euclidean (ℓ2) Distance:

∥x−w∥22 = ∥x∥22 + ∥w∥22 − 2⟨x,w⟩

If all data vectors has the same norm, the pair of vectors with

largest inner product is the pair with smallest Euclidean distance.
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Inner product for mnist

Inner product between MNIST digits:

⟨x,w⟩ =
28∑
i=1

28∑
j=1

matx[i , j ] · matw[i , j ].

Inner product similarity is higher when the images have large pixel

values (close to 1) in the same locations. I.e. when they have a lot

of overlapping white/light gray pixels.
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Inner product for mnist

Visualizing the inner product between two images:

Images with high inner product have a lot of overlap.
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k-NN algorithm on MNIST

Most similar images during k-NN search, k = 9:
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k-NN for other images

Does not work as well for less standardized classes of images:

CIFAR 10 Images

Even after scaling to have same size, converting to separate RGB

channels, etc. something as simple as k-NN won’t work.
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Another view on logistic regression

One-vs.-all or Multiclass Cross-entropy Classification with

Logistic Regression:

• Learn q classifiers with parameters β(1),β(2), . . . ,β(q).

• Given xnew compute ⟨xnew ,β(1)⟩, . . . , ⟨xnew ,β(q)⟩
• Predict class ynew = argmaxi ⟨xnew ,β(i)⟩.

If each x is a vector with 28× 28 = 784 entries than each β(i) also

has 784 entries. Each parameter vector can be viewed as a 28× 28

image.
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Matched filter

Visualizing β(0), . . . ,β(9):

Logistic regression classification rule: For an input ,

compute inner product similarity with all weight matrices and

choose most similar one.

In contrast to k-NN, only need to compute similarity with 10 items

instead of n. 14



Diving into similarity

Often the inner product does not make sense as a similarity

measure between data vectors. Here’s an example (recall that

smaller inner product means less similar):

But clearly the first image is more similar.

Here’s a more realistic scenario. 15



Kernel functions: a new measure of similarity

A kernel function k(x, y) is simply a similarity measure between

data points.

k(x, y) =

large if x and y are similar.

close to 0 if x and y are different.

Example: The Radial Basis Function (RBF) kernel, aka the

Gaussian kernel:

k(x, y) = e−∥x−y∥22/σ2

for some scaling factor σ.
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Kernel functions: a new measure of similarity

Lots of kernel functions involve transformations of ⟨x, y⟩ or
∥x− y∥2:

• Gaussian RBF Kernel: k(x, y) = e−∥x−y∥22/σ2

• Laplace Kernel: k(x, y) = e−∥x−y∥2/σ

• Polynomial Kernel: k(x, y) = (⟨x, y⟩+ 1)q.

But you can imagine much more complex similarity metrics.
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How to use a kernel function?

For k-nearest neighbors, can easily replace inner product with

whatever similarity function you want.

For logistic regression, it is less clear how to do so.
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How to use a kernel function?

Logistic Regression Loss:

L(β(1), . . . ,β(q)) = −
n∑

i=1

q∑
ℓ=1

1[yi = ℓ] · log e⟨β
(ℓ),xi ⟩∑q

j=1 e
⟨β(j),xi ⟩

Loss inherently involves inner product between each β(j) and each

data vector xi .

Solution: Only work with similarity metrics that can be expressed

as inner products.
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Kernel functions from feature transformation

A positive semidefinite (PSD) kernel is any similarity function with

the following form:

k(x,w) = ϕ(x)Tϕ(w)

where ϕ : Rd → Rm is a some feature transformation function.

20



Kernel functions and feature transformation

Example: Degree 2 polynomial kernel, k(x,w) = (xTw + 1)2.

x =

x1x2
x3

 ϕ(x) =



1√
2x1√
2x2√
2x3
x21
x22
x23√
2x1x2√
2x1x3√
2x2x3


(xTw + 1)2 = (x1w1 + x2w2 + x3w3 + 1)2

= 1 + 2x1w1 + 2x2w2 + 2x3w3 + x21w
2
1 + x22w

2
2 + x23w

2
3

+ 2x1w1x2w2 + 2x1w1x3w3 + 2x2w2x3w3

= ϕ(x)Tϕ(w). 21



Kernel functions and feature transformation

Not all similarity metrics are positive semidefinite (PSD), but all of

the ones we saw earlier are:

• Gaussian RBF Kernel: k(x, y) = e−∥x−y∥22/σ2

• Laplace Kernel: k(x, y) = e−∥x−y∥2/σ

• Polynomial Kernel: k(x, y) = (⟨x, y⟩+ 1)q.

And there are many more...
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Kernel functions and feature transformation

Feature transformations ⇐⇒ new similarity metrics.

To work with the similarity k(·, ·) in place of the inner product

⟨·, ·⟩, it suffices to replace every data point x1, . . . , xn by

ϕ(x1), . . . , ϕ(xn).
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Kernel functions and feature transformation

There are two major issues with this:

• While ϕ(x) is sometimes simple and explicit. More often, it

is not. We might be able to show a kernel is PSD without

easily being able to write down ϕ(x).

• Transform dimension m is often very large: e.g. m = O(dq)

for a degree q polynomial kernel. For many kernels (e.g. the

Gaussian kernel) m is actually infinite.

So doing the feature transformation explicitly would have very high

computational cost. Ideally we would like algorithms that run in

better then O(∞) time.
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Reparameterization trick

For simplicity, let’s just consider the binary cross entropy/logistic

regression loss:

−
n∑

j=1

yj log(h(Xβ)j) + (1− yj) log(1− h(Xβ)j)

where h(z) = 1
1+e−z .
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Reparameterization trick

Reminder from linear algebra: Without loss of generality, can

assume that β lies in the row span of X.

So for any β ∈ Rd , there exists a vector α ∈ Rn such that:

Xβ = XXTα.
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Reparameterization trick

Logistic Regression Equivalent Formulation: Given data matrix

X ∈ Rn×d and binary label vector y ∈ {0, 1}n for class i , find

α ∈ Rn to minimize the loss:

−
n∑

j=1

yj log(h(XX
Tα)j) + (1− yj) log(1− h(XXTα)j)

Can still be minimized via gradient descent:

∇L(α) = XXT (h(XXTα)− y).
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Reparameterization trick

If we use a non-linear data transformation ϕ (corresponding to a

PSD kernel), then the loss is:

−
n∑

j=1

yj log(h(ϕ(X)ϕ(X)
Tα)j) + (1− yj) log(1− h(ϕ(X)ϕ(X)Tα)j)
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kernel matrix

K = ϕ(X)ϕ(X)T is called the kernel Gram matrix.
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Kernel trick

We never need to actually compute ϕ(x1), . . . , ϕ(xn) explicitly!

• For training we just need the kernel matrix K, which requires

computing k(xi , xj) for all i , j .

We can always work with a finite sized n × n matrix.
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Kernel trick

Take away:

• Logistic regression can be combined with any positive

semidefinite kernel matrix, and the model can be trained in

time independent of the transform dimension m.
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Kernel trick: prediction

Prediction:

• Prediction can also be done efficiently. For a new input xnew ,

we need to compute:

⟨ϕ(xnew ),β⟩ = ⟨ϕ(xnew ), ϕ(X)Tα⟩

= ⟨ϕ(xnew ),
n∑

i=1

ϕ(xi )αi ⟩ =
n∑

i=1

αi ⟨ϕ(xnew ), ϕ(xi )⟩.

Each term in the sum ⟨ϕ(xnew ), ϕ(xi )⟩ = k(xnew , xi ) can be

computed without explicit feature transformation.
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Beyond the kernel trick

The kernel matrix K is still n × n though which is huge when the

size of the training set n is large. Has made the kernel trick less

appealing in some modern ML applications.

There is an inherent quadratic dependence on n in the

computational and space complexity of kernel methods.

• 10, 000 data points → runtime scales as ∼ 100, 000, 000, K

takes 800MB of space.

• 1, 000, 000 data points → runtime scales as ∼ 1012, K takes

8TB of space. 33



Beyond the kernel trick

Many algorithmic advances in recent years partially address this

computational challenge (random Fourier features methods,

Nystrom methods, etc.)
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Kernel regression

The kernel trick can also be applied outside of classification. E.g.

to regression:

min
β

∥Xβ − y∥22 + λ∥β∥22 → min
α

∥XXTα− y∥22 + λ∥XTα∥22

Replace XXT by kernel matrix K during training.

Prediction:

ynew =
n∑

i=1

αi · k(xnew , xi ).

Added benefit: Relatively numerically stable. E.g. is a much better

option for performing multivariate or even single variate polynomial

regression than direct feature expansion.
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Kernel regression

We won’t study kernel regression in detail, but kernel regression

with non-linear kernels like e−∥x−y∥22 is a very important statistical

tool, especially when dealing with spatial or temporal data.

Also known as Gaussian Process (GP) Regression or Kriging.
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Support Vector Machines
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Today

Support Vector Machines (SVMs): Another algorithm for

finding linear classifiers which is (was?) as popular as logistic

regression.

• Can also be combined with kernels.

• Developed from a pretty different perspective.

• But final algorithm is not that different.

• Invented in 1963 by Alexey

Chervonenkis and Vladimir

Vapnik. Also founders of

VC-theory.

• First combined with non-linear

kernels in 1993.
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SVM’s vs. logistic regression

For some reason, SVMs are more commonly associated with

non-linear kernels. For example, sklearn’s SVM classifier (called

SVC) has support for non-linear kernels built in by default. Its

logistic regression classifier does not.

• I believe this is mostly for historical reasons and connections

to theoretical machine learning.

• In the early 2000s SVMs where a “hot topic” in machine

learning and their popularity persists.

• It is not clear to me if they are better than logistic regression,

but honestly the jury is still out...
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SVM’s vs. logistic regression

Next lab: Machina-a-machina comparison of SVMs vs. logistic

regression for a MNIST digit classification problem. Which

provides better accuracy? Which is faster to train?
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Linearly separable data

We call a dataset with binary labels linearly separable if it can be

perfectly classified with a linear classifier:

This the realizable setting we discussed in the learning theory

lecture.
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Linearly separable data

Formally, there exists a parameter β such that ⟨β, x⟩ > 0 for all x

in class 1 and ⟨β, x⟩ < 0 for all x in class 0.

Note that if we multiply β by any constant c , cβ gives the same

separating hyperplane because ⟨cβ, x⟩ = c⟨β, x⟩.
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Linearly separable data

A data set might be linearly separable when using a

non-kernel/feature transformation even if it is not separable in the

original space.

This data is separable when using a degree-2 polynomial kernel. If

suffices for ϕ(x) to contain x21 and x22 .
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Margin

When data is linearly separable, there are typically multiple valid

separating hyperplanes.

Question from Vapnik and Chervonenkis: Which

hyperplane/classification rule is best?
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Margin

The margin m of a separating hyperplane is the minimum ℓ2

(Euclidean) distance between a point in the dataset and the

hyperplane.

m = min
i

∆i where ∆i =
|⟨xi ,β⟩|
∥β∥2
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Margin

We have that xi = vi + ei where vi is parallel to β and ei is

perpendicular.

∆i = ∥vi∥2 = 1
∥vi∥2 · ⟨vi , vi ⟩ =

1
∥vi∥2 ·

∥vi∥2
∥β∥2 · |⟨vi ,βi ⟩| =

|⟨vi ,β⟩|
∥β∥2 .

Finally, we have that ⟨xi ,β⟩ = ⟨vi ,β⟩ because ⟨ei ,β⟩ = 0.
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Support vector

A support vector is any data point xi such that |⟨xi ,β⟩|
∥β∥2 = m.
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Hard-margin svm

A hard-margin support vector machine (SVM) classifier finds the

maximum margin (MM) linear classifier.

I.e. the separating hyperplane which maximizes the margin m.
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margin

Denote the maximum margin by m∗.

m∗ = max
β

[
min

i∈1,...,n

|⟨xi ,β⟩|
∥β∥2

]
= max

β

[
min

i∈1,...,n

yi · ⟨xi ,β⟩
∥β∥2

]
where yi = −1, 1 depending on what class xi .

3

3Note that this is a different convention than the 0, 1 class labels we typically

use.
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Hard-margin svm

Equivalent formulation:

m∗ = max
v:∥v∥2=1

[
min

i∈1,...,n
yi · ⟨xi , v⟩

]

1

m∗ = min
v:∥v∥2=1

c

c subject to c · yi · ⟨xi , v⟩ ≥ 1 for all i .

= min
v:∥v∥2=1

c

∥c · v∥2 subject to yi · ⟨xi , c · v⟩ ≥ 1 for all i .
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Hard-margin svm

Equivalent formulation:

min
β

∥β∥22 subject to yi · ⟨xi ,β⟩ ≥ 1 for all i .

Under this formulation m = 1
∥β∥2 .

This is a constrained optimization problem. In particular, a

linearly constrained quadratic program, which is a type of problem

we have efficient optimization algorithms for.
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Hard-margin svm

Hard-margin SVMs have a few critical issues in practice:

Data might not be linearly separable, in-which case the maximum

margin classifier is not even defined.

Less likely to be an issue when using a non-linear kernel. If K is full rank

then perfect separation is always possible. And typically it is, e.g. for an

RBF kernel or moderate degree polynomial kernel. 51



Hard-margin svm

Another critical issue in practice:

Hard-margin SVM classifiers are not robust.
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Soft-margin svm

Solution: Allow the classifier to make some mistakes!

Hard margin objective:

min
β

∥β∥22 subject to yi · ⟨xi ,β⟩ ≥ 1 for all i .

Soft margin objective:

min
β

∥β∥22 + C
n∑

i=1

ϵi subject to yi · ⟨xi ,β⟩ ≥ 1− ϵi for all i .

where ϵi ≥ 0 is a non-negative “slack variable”. This is the

magnitude of the error made on example xi .

C ≥ 0 is a non-negative tuning parameter.
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Soft-margin svm

Example of a non-separable problem:
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Soft-margin svm

Recall that ∆i =
yi ·⟨xi ,β⟩
∥β∥2 .

Soft margin objective:

min
β

∥β∥22 + C
n∑

i=1

ϵi subject to yi · ⟨xi ,β⟩ ≥ 1− ϵi for all i .
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Soft-margin svm

Recall that ∆i =
yi ·⟨xi ,β⟩
∥β∥2 .

Soft margin objective:

min
β

∥β∥22 + C
n∑

i=1

ϵi subject to
yi · ⟨xi ,β⟩

∥β∥2
≥ 1

∥β∥2
− ϵi

∥β∥2
for all i .
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Soft-margin svm

Any xi with a non-zero ϵi is a support vector.
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Effect of c

Soft margin objective:

min
β

∥β∥22 + C
n∑

i=1

ϵi .

• Large C means penalties are punished more in objective =⇒
smaller margin, less support vectors.

• Small C means penalties are punished less in objective =⇒
larger margin, more support vectors.

When data is linearly separable, as C → ∞ we will always get a

separating hyperplane. A smaller value of C might lead to a more

robust solution.
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Effect of c

Example dataset:
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effect of c

The classifier on the right is intuitively more robust. So for this

data, a smaller choice for C might make sense.
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Dual formulation

Reformulation of soft-margin objective:

max
α

n∑
i=1

αi −
1

2

∑
i,j

yiyjαiαi ⟨xi , xj⟩ −
1

2C

n∑
i=1

α2
i

subject to αi ≥ 0,
n∑

i=1

αiyi = 0.

Obtained by taking the Lagrangian dual of the objective. Beyond the

scope of this class, but important for a few reasons:

• Objective only depends on inner products ⟨xi , xj⟩, which makes it

clear how to combine the soft-margin SVM with a kernel.

• Possible to prove that αi is only non-zero for the support

vectors. When classifying a new data point, only need to

compute inner products (or the non-linear kernel inner

product) with this subset of training vectors. This is not the

case for the logistic regression classifier.
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Comparison to logistic regression

Some basic transformations of the soft-margin objective:

min
β

∥β∥22 + C
n∑

i=1

ϵi subject to yi · ⟨xi ,β⟩ ≥ 1− ϵi for all i .

min
β

∥β∥22 + C
n∑

i=1

max(0, 1− yi · ⟨xi ,β⟩).

min
β

λ∥β∥22 +
n∑

i=1

max(0, 1− yi · ⟨xi ,β⟩).

These are all equivalent. λ = 1/C is just another scaling

parameter.
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Hinge loss

Hinge-loss: max(0, 1− yi · ⟨xi ,β⟩). Recall that yi ∈ {−1, 1}.

Soft-margin SVM:

min
β

[
n∑

i=1

max(0, 1− yi · ⟨xi ,β⟩) + λ∥β∥22

]
. (1)
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Logistic loss

Recall the logistic loss for yi ∈ {0, 1}:

L(β) = −
n∑

i=1

yi log(h(⟨xi ,β⟩)) + (1− yi ) log(1− h(⟨xi ,β⟩))

= −
n∑

i=1

yi log

(
1

1 + e−⟨xi ,β⟩

)
+ (1− yi ) log

(
e−⟨xi ,β⟩

1 + e−⟨xi ,β⟩

)

= −
n∑

i=1

yi log

(
1

1 + e−⟨xi ,β⟩

)
+ (1− yi ) log

(
1

1 + e⟨xi ,β⟩

)
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Comparison of SVM to logistic regression

Compare this to the logistic regression loss reformulated for

yi ∈ {−1, 1}):
n∑

i=1

− log

(
1

1− e−yi ·⟨xi ,β⟩

)
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Comparison to logistic regression

So, in the end, the function minimized when finding β for the

standard soft-margin SVM is very similar to the objective

function minimized when finding β using logistic regression with

ℓ2 regularization. Sort of...

Both functions can be optimized using first-order methods like

gradient descent. This is now a common choice for large problems.
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Comparison to logistic regression

The jury is still out on how different these methods are...

• Work through Demo 6: demo mnist svm.ipynb.

• Lab 5 on SVM vs. Logistic Regression
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