
CS-GY 6923: Lecture 10

Convolutional Neural Networks, Adversarial

Examples

NYU Tandon School of Engineering, Akbar Rafiey
Slides by Prof. Christopher Musco

1

Recap from last lecture

1

Backprop

For any feed-forward neural network with d parameters:

• Backpropagation can be used to compute derivatives with

respect to one particular input in O(d) time.

• Final computation boils down to linear algebra operations

(matrix multiplication and vector operations) which can be

performed quickly on a GPU.

Allows for very fast implementation of Stochastic Gradient Descent

for training neural networks.

2

Backprop example

Step 2: Backward pass. Next layer.

∂z

∂c
=

∂z

∂ f̄
· ∂ f̄
∂c

+
∂z

∂ḡ
· ∂ḡ
∂c

+
∂z

∂h̄
· ∂h̄
∂c

=
∂z

∂ f̄
·Wc,f +

∂z

∂ḡ
·Wc,g +

∂z

∂h̄
·Wc,h

∂z

∂d
=

∂z

∂ f̄
·Wd,f +

∂z

∂ḡ
·Wd,g +

∂z

∂h̄
·Wd,h

∂z

∂e
=

∂z

∂ f̄
·We,f +

∂z

∂ḡ
·We,g +

∂z

∂h̄
·We,h

3

Backprop linear algebra

Linear algebraic view.

Let vi be a vector containing the value of all nodes j in layer i .

v3 =
[
z
]

v2 =

fg
h

 v1 =

cd
e

Let v̄i be a vector containing j̄ for all nodes j in layer i .

v̄3 =
[
z̄
]

v̄2 =

f̄ḡ
h̄

 v̄1 =

c̄d̄
ē

Note: vi = s(v̄i), where s is applied entrywise.

4

Backprop linear algebra

Linear algebraic view.

Let δi be a vector containing ∂z/∂j for all nodes j in layer i .

δ3 =
[
1
]

δ2 =

∂z/∂f∂z/∂g

∂z/∂h

 δ1 =

∂z/∂c∂z/∂d

∂z/∂e

Let δ̄i be a vector containing ∂z/∂ j̄ for all nodes j in layer i .

δ̄3 =
[
∂z/∂z̄

]
δ̄2 =

∂z/∂ f̄∂z/∂ḡ

∂z/∂h̄

 δ̄1 =

∂z/∂c̄∂z/∂d̄

∂z/∂ē

Note: δ̄i = s ′(v̄i)× δi where × denotes entrywise multiplication.

5

Backprop linear algebra

Let Wi be a matrix containing all the weights for edges between layer i

and layer i + 1.

W2 =
[
Wf ,z Wg ,z Wh,z

]
W1 =

Wc,f Wd,f We,f

Wc,g Wd,g We,g

Wc,h Wd,h We,h

W0 =

Wa,c Wb,c

Wa,d Wb,d

Wa,e Wb,e

6

Backprop linear algebra

Claim 1: Node derivative computation is matrix multiplication.

δi = WT
i δ̄i+1

7

Backprop linear algebra

Let ∆i be a matrix contain the derivatives for all weights for edges

between layer i and layer i + 1.

∆2 =
[
∂z/∂Wf ,z ∂z/∂Wg ,z ∂z/∂Wh,z

]
∆1 =

∂z/∂Wc,f ∂z/∂Wd,f ∂z/∂We,f

∂z/∂Wc,g ∂z/∂Wd,g ∂z/∂We,g

∂z/∂Wc,h ∂z/∂Wd,h ∂z/∂We,h

∆0 = . . .

8

Backprop linear algebra

Claim 2: Weight derivative computation is an outer-product.

∆i = viδ
T
i+1.

9

Neural network demos

Two demos will be uploaded on neural networks:

• keras demo synthetic.ipynb

• keras demo mnist.ipynb

Please spend some time working through these.

10

Neural network software

Low-level libraries have built in optimizers (SGD and improvements)

and can automatically perform backpropagation for arbitrary network

structures. Also optimize code for any available GPUs.

Keras has high level functions for defining and training a neural network

architecture.
11

Neural network software

Define model:

Compile model:

Train model:

12

Feature extraction

Why do neural networks work so well?

Treat feature transformation/extraction as part of the learning

process instead of making this the users job.

But sometimes they still need a nudge in the right direction...

13

Basic feature extraction

14

Basic feature extraction

Sigmoid activation: Each hidden variable zi equals
1

1+e−zi
where

zi = wTx+ b for input x.

Other non-linearities yield similar features.

15

Basic feature extraction

If you combine more hidden variables, you can start building more

complex classifiers.

What about even more complex datasets?

16

Basic feature extraction

With more layers, complexity starts ramping up:

But there is a limit...

17

Basic feature extraction

Modern machine learning algorithms can differentiate between

images of African and Asian elephants:

The features needed for this task are far more complex then we

could expect a network to learn completely on its own using

combinations of linear layers + non-linearities.
18

Convolutional feature extraction

Today’s topic: Understand why convolution is a powerful way of

extracting features from image data. Also super valuable for

• Audio data.

• Time series data.

Ultimately, can build convolutional networks that already have

convolutional feature extraction pre-coded in. Just need to learn

weights.

19

Motivating example

What features would tell use this image contains a stop sign?

Typically, way of vectorizing an image chops up and splits up any

pixels in the stop sign. We need very complex features to piece

these back together again... 20

Convolution

Objects or features of an image often involve pixels that are spatially

correlated. Convolution explicitly encodes this.

Definition (Discrete 1D convolution1)

Given x ∈ Rd and w ∈ Rk the discrete convolution x⊛w is a d − k + 1

vector with:

[x⊛w]i =
k∑

j=1

x(j+i−1)wj

Think of x ∈ Rd as long data vector (e.g. d = 512) and w ∈ Rk as

short filter vector (e.g. k = 8). u = [x⊛w] is a feature transformation.

1This is slightly different from the definition of convolution you might have

seen in a Digital Signal Processing class because w does not get “flipped”. In

signal processing our operation would be called correlation.

21

1D convolution

22

Match the convolution

23

2D convolution

Definition (Discrete 2D convolution)

Given matrices x ∈ Rd1×d2 and w ∈ Rk1×k2 the discrete convolution

x⊛w is a (d1 − k1 + 1)× (d2 − k2 + 1) matrix with:

[x⊛w]i,j =
k1∑
ℓ=1

k2∑
h=1

x(i+ℓ−1),(j+h−1) ·wℓ,h

Again technically this is “correlation” not “convolution”. Should be

performed in Python using scipy.signal.correlate2d instead of

scipy.signal.convolve2d.

w is called the filter or convolution kernel and again is typically much

smaller than x.

24

2D convolution

w =

0 1 2

2 2 0

0 1 2

25

2D convolution

w =

0 1 2

2 2 0

0 1 2

26

Zero padding

Sometimes “zero-padding” is introduced so x⊛w is d1 × d2 if x is

d1 × d2.

Need to pad on left and right by (k1 − 1)/2 and on top and

bottom by (k2 − 1)/2.

27

Applications of convolution

Examples code will be available in demo1 convolutions.ipynb.

Application 1: Blurring/smooth.

In one dimension:

• Uniform (moving average) filter: wi =
1
k for i = 1, . . . , k.

• Gaussian filter: wi ∼ exp(i−k/2)2/σ2
for i = 1, . . . , k.

28

Smoothing filters

29

Smoothing filters

Useful for smoothing time-series data, or removing noise/static

from audio data.

Replaces every data point with a local average.

30

Smoothing in two dimensions

In two dimensions:

• Uniform filter: wi ,j =
1

k1k2
for i = 1, . . . , k1, j = 1, . . . , k2.

• Gaussian filter: wi ∼ exp
(i−k1/2)

2+(j−k2/2)
2

σ2 for i = 1, . . . , k1,

j = 1, . . . , k2.

Larger filter equates to more smoothing.

31

Smoothing in two dimensions

For Gaussian filter, you typically choose k ≳ 2σ to capture the

fall-off of the Gaussian.

Both approaches effectively denoise and smooth images.

32

Smoothing for feature extraction

When combined with other feature extractors, smoothing at

various levels allows the algorithm to focus on high-level features

over low-level features.

33

Applications of convolution

Application 2: Pattern matching.

Slide a pattern over an image. Output of convolution will be

higher when pattern correlates well with underlying image.

34

Local pattern matching

Applications of local pattern matching:

• Check if an image contains text.

• Look for specific sound in audio recording.

• Check for other well-structured objects

35

3D convolution

Recall that color images actually have three color channels for red,

green, blues. Each pixel is represented by 3 values (e.g. in

0, . . . , 255) giving the intensity in each channel.

[0, 0, 0] = black, [1, 1, 1] = white, [1, 0, 0] = pure red, etc.

View image as 3D tensor:

36

3D convolution

Definition (Discrete 3D convolution)

Given tensors x ∈ Rd1×d2×d3 and w ∈ Rk1×k2×k3 the discrete

convolution x⊛w is a

(d1 − k1 + 1)× (d2 − k2 + 1)× (d3 − k3 + 1) tensor with:

[x⊛w]i ,j ,g =

k1∑
ℓ=1

k2∑
m=1

k3∑
n=1

x(i+ℓ−1),(j+m−1),(g+n−1) ·wℓ,m,n

37

Application 2: pattern matching

More powerful patter matching in color images:

38

Applications of convolution

Application 3: Edge detection.

These are 2D edge detection filter:

W1 =
[
1 −1

]
W2 =

[
1

−1

]

39

Applications of convolution

Sobel filter is more commonly used:

W1 =

1 0 −1

2 0 −2

1 0 −1

 W2 =

 1 2 1

0 0 0

−1 −2 −1

40

Directional edge detection

Can define edge detection filters for any orientation.

41

Edge detection

How would edge detection as a feature extractor help you classify

images of city-scapes vs. images of landscapes?

42

Edge detection

mean(|EC |) = .108 vs. mean(|EL|) = .123

The image with highest vertical edge response isn’t the city-scape.

43

Edge detection + pattern matching

Feed edge detection result into pattern matcher that looks for long

vertical lines.

44

Hierarchical convolutional features

mean(VC) = .062 vs. mean(VL) = .054

The image with highest average response to (edge detector) + (vertical

pattern) is the city scape.

mean(V) = VTβ where β = [1/n, . . . , 1/n]. So the new features in V

could be combined with a simple linear classifier to separate cityscapes

from landscapes

45

Hierarchical convolutional features

Hierarchical combinations of simple convolution filters are

very powerful for understanding images.

Edge detection seems like a critical first step.

Lots of evidence from biology.

46

Visual system

Light comes into the eye through the lens and is detected by an array of

photosensitive cells in the retina.

Rod cells are sensitive to all light, larger cone cells are sensitive to

specific colors. We have three types of cones:

47

Visual system

Signal passes from the retina to the primary (V1) visual cortex, which has

neurons that connect to higher level parts of the brain.

What sort of processing happens in the primary cortex?

Lots of edge detection!

48

Edge detectors in cats

Huber + Wiesel, 1959: “Receptive fields of single neurones in the cat’s

striate cortex.” Won Nobel prize in 1981.

Different neurons fire when the cat is presented with stimuli at different

angles. Cool video at

https://www.youtube.com/watch?v=OGxVfKJqX5E.

”What the Frog’s Eye Tells the Frog’s Brain”, Lettvin et al. 1959. Found

explicit edge detection circuits in a frogs visual cortex.
49

https://www.youtube.com/watch?v=OGxVfKJqX5E

Explicit feature engineering

State of the art until 12 years ago:

• Convolve image with edge detection filters at many different

angles.

• Hand engineer features based on the responses.

• SIFT and HOG features were especially popular.

50

Convolutional neural networks

Neural network approach: Learn the parameters of the convolution

filters based on training data.

First convolutional layer involves n convolution filters W1, . . . ,Wn. Each

is small, e.g. 5× 5. Every entry in Wi is a free parameter: ∼ 25 · n
parameters to learn.

Produces n matrices of hidden variables: i.e. a tensor with depth n.

51

Weight sharing

Convolutional layers can be viewed as fully connected layers with

added constraints. Many of the weights are forced to 0 and we

have weight sharing constraints.

Weight sharing needs to be accounted for when running

backprop/gradient descent.
52

Convolutional neural networks

A fully connected layer that extracts the same feature would require

(28 · 28 · 24 · 24) · n = 451, 584 · n parameters. Difference of over

200, 000x from 25n.

By “baking in” knowledge about what type of features matter, we greatly

simply the network.

Each of the n ouputs is typically processed with a non-linearity. Most

commonly a Rectified Linear Unity (ReLU): x = max(x̄ , 0).
53

Pooling and downsampling

Convolution + non-linearity are typically followed by a layer which

performs pooling + down-sampling.

Most common approach is max-pooling.

54

Pooling and downsampling

• Reduces number of variables.

• Helps “smooth” result of

convolutional filters.

• Improves shift-invariance.

55

Overall network architecture

Each layer contains a 3D tensor of variables. Last few layers are

standard fully connected layers.

56

Understanding layers

What type of convolutional filters do we learn from gradient descent?

Lots of edge detectors in the first layer!

Other layers are harder to understand... but roughly hidden variables

later in the network encode for “higher level features”:

57

Understanding layers

How can we know?

Go through dataset and find the inputs that most “excite” a given

neuron h. I.e. for which |h(x)| is largest.

58

Understanding layers

How can we know?

Alternative approach: Solve the optimization problem

maxx |h(x)| e.g. using gradient descent.

59

Understanding layers

Early work had some interesting results.

“Understanding Neural Networks Through Deep Visualization”, Yosinski et al.

60

Understanding layers

There has been a lot of work on improving these methods by

regularization. I.e. solve maxx |h(x)|+ g(x) where g constrains x to look

more like a “natural image”.

If you are interested in learning more on these techniques, there is a great

Distill article at: https://distill.pub/2017/feature-visualization/.
61

https://distill.pub/2017/feature-visualization/

Understanding layers

Nodes at different layers have different layers capture increasingly more

abstract concepts.

62

Understanding layers

Nodes at different layers have different layers capture increasingly more

abstract concepts.

General obervation: Depth more important than width. Alexnet 2012

had 8 layers, modern convolutional nets can have 100s.
63

Tricks of the trade

Beyond techniques discussed for general neural nets (back-prop, batch

gradient descent, adaptive learning rates) training deep networks requires

a lot of “tricks”.

• Batch normalization (accelerate training).

• Dropout (prevent over-fitting)

• Residual connections (accelerate training, allow for more depth –

100s of layers).

• Data augmentation.

And deep networks require lots of training data and lots of time.

64

Batch normalization

Start with any neural network architecture:

For input x,

z̄ = wTx+ b

z = s(z̄)

where w, b, and s are weights, bias, and non-linearity. 65

Batch normalization

z̄ is a function of the input x. We can write it as z̄(x). Consider

the mean and standard deviation of the hidden variable over our

entire dataset x1 . . . , xn:

µ =
1

n

n∑
j=1

z̄(xj)

σ2 =
1

n

n∑
j=1

(z̄(xj)− µ)2

Just as normalization (mean centering, scaling to unit variance) is

sometimes used for input features, batch-norm applies

normalization to learned features.

66

Batch normalization

Can add a batch normalization layer after any layer:

ū =
z̄ − µ

σ

u = s(ū).

Has the effect of mean-centering/normalizing z̄ . Typically we actualy

allow u = s(γ · ū + c) for learned parameters γ and c .

67

Batch normalization

Proposed in 2015: “Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift”, Ioffe, Szegedy.

Doesn’t change the expressive power of the network, but allows for

significant convergence acceleration. It is not yet well understood why

batch normalizition speeds up training.

68

Data augmentation

Great general tool to know about. Main idea:

• More training data typically leads to a more accurate model.

• Artificially enlarge training data with simple transformations.

Take training images and randomly shift, flip, rotate, skew, darken,

lighten, shift colors, etc. to create new training images. Final classifier

will be more robust to these transformations.

69

Deep learning tricks

Need to take a full course on neural networks/deep learning to

learn more! State-of-the-art techniques are constantly evolving.

70

Deeper and deeper, bigger and bigger

After AlexNet (8 layers, 60 million parameters) achieved state of

the art performance on ImageNet, progress proceeded rapidly:

71

Generalization for neural networks

Even with weight sharing, convolution, etc. modern neural

networks typically have 100s of millions of parameters. And we

don’t train them with regularization. Intuitively we might expect

them to overfit to training data.

72

Generalization for neural networks

In fact, we now know that modern neural nets can easily overfit to

training data. This work showed that we can fit large vision data

sets with random class labels to essentially perfect accuracy.

But we don’t always see a large gap between training and test

error. Don’t take this to mean overfitting isn’t a problem

when using neural nets! It’s just not always a problem.

73

Generalization for neural networks

We even see this lack of overfitting for MNIST data. Check

keras demo mnist.ipynb I posted on the website:

74

Generalization for neural networks

One growing realization is that this phenomena doesn’t only apply to

neural networks – it can also be true for fitting highly-overparameterized

polynomials.

The choice of training algo (e.g. gradient descent) seems important. 75

Double descent

We sometimes see a “double descent curve” for these models. Test error

is worst for “just barely” overparameterized models, but gets better with

lots of overparameterization.

We don’t usually see this same curve for neural networks.
76

Overfitting in neural nets

Take away: Modern neural network overfit, but still seem fairly

robust. Perform well on any new test data we throw that them.

Or do they?

77

Adversarial examples

77

Adversarial examples

Main discovery: It is possible to find imperceptibly small

perturbations of input images that will fool deep neural networks.

This seems to be a universal phenomenon.

Important: Random perturbations do not work!

78

Adversarial examples

How to find “good” perturbations:

Fix model fθ, input x, correct label y . Consider the loss ℓ(θ, x, y).

Solve the optimization problem:

max
δ,∥δ∥≤ϵ

ℓ(θ, x+ δ, y)

Can be solved using gradient descent! We just need to compute

the derivative of the loss with respect to the image pixels.

Backprop can do this easily.

79

Adversarial examples

Teal put together a really cool lab where you can find your own

adversarial examples for a model called Resnet18. The entire

model + weights are available through PyTorch, so we do not need

to train it ourselves (i.e. this is a pre-trained model).

80

