
CS-GY 6923: Lecture 11

Finishing CNN and Adversarial examples,

Autoencoders, PCA

NYU Tandon School of Engineering, Akbar Rafiey
Slides by Prof. Christopher Musco

1

Overall network architecture

Each layer contains a 3D tensor of variables. Last few layers are

standard fully connected layers.

2

Pooling and downsampling

• Reduces number of variables.

• Helps “smooth” result of

convolutional filters.

• Improves shift-invariance.

3

Understanding layers

What type of convolutional filters do we learn from gradient descent?

Lots of edge detectors in the first layer!

Other layers are harder to understand... but roughly hidden variables

later in the network encode for “higher level features”:

4

Understanding layers

How can we know?

Go through dataset and find the inputs that most “excite” a given

neuron h. I.e. for which |h(x)| is largest.

5

Understanding layers

How can we know?

Alternative approach: Solve the optimization problem

maxx |h(x)| e.g. using gradient descent.

6

Understanding layers

Early work had some interesting results.

“Understanding Neural Networks Through Deep Visualization”, Yosinski et al.

7

Understanding layers

There has been a lot of work on improving these methods by

regularization. I.e. solve maxx |h(x)|+ g(x) where g constrains x to look

more like a “natural image”.

If you are interested in learning more on these techniques, there is a great
Distill article at: https://distill.pub/2017/feature-visualization/.

8

Understanding layers

Nodes at di↵erent layers have di↵erent layers capture increasingly more

abstract concepts.

9

Understanding layers

Nodes at di↵erent layers have di↵erent layers capture increasingly more

abstract concepts.

General obervation: Depth more important than width. Alexnet 2012

had 8 layers, modern convolutional nets can have 100s.
10

Deeper and deeper, bigger and bigger

After AlexNet (8 layers, 60 million parameters) achieved state of

the art performance on ImageNet, progress proceeded rapidly:

11

Tricks of the trade

Beyond techniques discussed for general neural nets (back-prop, batch

gradient descent, adaptive learning rates) training deep networks requires

a lot of “tricks”.

• Batch normalization (accelerate training).

• Dropout (prevent over-fitting)

• Residual connections (accelerate training, allow for more depth –

100s of layers).

• Data augmentation.

And deep networks require lots of training data and lots of time.

12

-> f(x, 8)+X

&-I

Batch normalization

Start with any neural network architecture:

For input x,

z̄ = wTx+ b

z = s(z̄)

where w, b, and s are weights, bias, and non-linearity. 13

Batch normalization

z̄ is a function of the input x. We can write it as z̄(x). Consider

the mean and standard deviation of the hidden variable over our

entire dataset x1 . . . , xn:

µ =
1

n

nX

j=1

z̄(xj)

�2 =
1

n

nX

j=1

(z̄(xj)� µ)2

Just as normalization (mean centering, scaling to unit variance) is

sometimes used for input features, batch-norm applies

normalization to learned features.

14

Batch normalization

Can add a batch normalization layer after any layer:

ū =
z̄ � µ

�

u = s(ū).

Has the e↵ect of mean-centering/normalizing z̄ . Typically we actualy

allow u = s(� · ū + c) for learned parameters � and c .

15

Batch normalization

Proposed in 2015: “Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift”, Io↵e, Szegedy.

Doesn’t change the expressive power of the network, but allows for

significant convergence acceleration. It is not yet well understood why

batch normalizition speeds up training.

16

Data augmentation

Great general tool to know about. Main idea:

• More training data typically leads to a more accurate model.

• Artificially enlarge training data with simple transformations.

Take training images and randomly shift, flip, rotate, skew, darken,

lighten, shift colors, etc. to create new training images. Final classifier

will be more robust to these transformations.

17

Deep learning tricks

Need to take a full course on neural networks/deep learning to

learn more! State-of-the-art techniques are constantly evolving.

18

Deeper and deeper, bigger and bigger

After AlexNet (8 layers, 60 million parameters) achieved state of

the art performance on ImageNet, progress proceeded rapidly:

19

Generalization for neural networks

Even with weight sharing, convolution, etc. modern neural

networks typically have 100s of millions of parameters. And we

don’t train them with regularization. Intuitively we might expect

them to overfit to training data.

20

Generalization for neural networks

In fact, we now know that modern neural nets can easily overfit to

training data. This work showed that we can fit large vision data

sets with random class labels to essentially perfect accuracy.

But we don’t always see a large gap between training and test

error. Don’t take this to mean overfitting isn’t a problem

when using neural nets! It’s just not always a problem.

21

Generalization for neural networks

We even see this lack of overfitting for MNIST data. Check

keras demo mnist.ipynb I posted on the website:

22

Generalization for neural networks

One growing realization is that this phenomena doesn’t only apply to

neural networks – it can also be true for fitting highly-overparameterized

polynomials.

The choice of training algo (e.g. gradient descent) seems important. 23

Double descent

We sometimes see a “double descent curve” for these models. Test error

is worst for “just barely” overparameterized models, but gets better with

lots of overparameterization.

We don’t usually see this same curve for neural networks.
24

Overfitting in neural nets

Take away: Modern neural network overfit, but still seem fairly

robust. Perform well on any new test data we throw that them.

Or do they?

25

11 f(x) - F(y)/) -> 11X-Y11

Adversarial examples

25

Adversarial examples

Main discovery: It is possible to find imperceptibly small

perturbations of input images that will fool deep neural networks.

This seems to be a universal phenomenon.

Important: Random perturbations do not work!

26

-

Adversarial examples

How to find “good” perturbations:

Fix model f✓, input x, correct label y . Consider the loss `(✓, x, y).

Solve the optimization problem:

max
�,k�k✏

`(✓, x+ �, y)

Can be solved using gradient descent! We just need to compute

the derivative of the loss with respect to the image pixels.

Backprop can do this easily.

27

Adversarial examples

Teal put together a really cool lab where you can find your own

adversarial examples for a model called Resnet18. The entire

model + weights are available through PyTorch, so we do not need

to train it ourselves (i.e. this is a pre-trained model).

28

Transfer Learning and Autoencoders

28

Transfer learning

State-of-the-art supervised learning models like neural networks

learn very good features.

But they require lots and lots of data. ImageNet has 14 million

labeled images. Mostly of everyday objects.

29

One-shot learning

What if you want to apply deep convolutional networks to a problem

where you do not have a lot of labeled data in the first place?

Example: Classify images of di↵erent Quidditch balls.

30

One-shot learning

Real example: Classify images of insects for use in agricultural

applications in new localities.

31

One-shot learning

A human could probably achieve near perfect classification

accuracy even given access to a single labeled example from

each class:

Major question in ML: How? Can we design ML algorithms

which can do the same?

32

Transfer learning

Transfer knowledge from one task we already know how to solve to

another.

For example, we have learned from past experience that balls used

in sports have consistent shapes, colors, and sizes. These features

can be used to distinguish balls of di↵erent type.

33

Feature learning

Examples of possible high-level features a human would learn:

34

&

Feature learning

If these features are highly informative (i.e. lead to highly

separable data) few training examples are needed to learn.

Might su�ce to classify ball using nearest training example in

feature space, even if just a handful of training examples.

35

Transfer learning

Empirical observation: Features learned when training models

like deep neural nets seem to capture exactly these sorts of

high-level properties.

Even if we can’t put into words what each feature in z means...
36

X

Transfer learning

This is now a common technique in computer vision:

1. Download network trained on large image classification dataset (e.g.

Imagenet).

2. Extract features z for any new image x by running it through the

network up until layer before last.

3. Use these features in a simpler machine learning algorithm that

requires less data (nearest neighbor, logistic regression, etc.).

This approach has even been used on the quidditch problem:

github.com/thatbrguy/Object-Detection-Quidditch

37

Unsupervised feature learning

Transfer learning: Lots of labeled data for one problem makes up

for little labeled data for another.

But what if we don’t even have labeled data for a su�ciently

related problem?

How to extract features in a data-driven way from unlabeled data

is one of the central problems in unsupervised learning.

38

Supervised vs. unsupervised learning

• Supervised learning: All input data examples come with

targets/labels. What machines have been really good at for

the past 8 years.

• Unsupervised learning: No input data examples come with

targets/labels. Interesting problems to solve include

clustering, anomaly detection, semantic embedding, etc.

• Semi-supervised learning: Some (typically very few) input

data examples come with targets/labels. What human babies

are really good at, and we have recently made machines a lot

better at.

39

Autoencoder

Simple but clever idea: If we have inputs x1, . . . , xn 2 Rd but

few or no targets y1, . . . , yn, just make the inputs the targets.

• Let f✓ : Rd ! Rd be our model.

• Let L✓ be a loss function. E.g. squared loss:

L✓(x) = kx� f✓(x)k22.
• Train model: ✓⇤ = min✓

Pn
i=1 L✓(x).

If f✓ is a model that incorporates feature learning, then these

features can be used for supervised tasks.

f✓ is called an autoencoder. It maps input space to input space

(e.g. images to images, french to french, PDE solutions to PDE

solutions).

40

%

--

20(x) = 11/- fo(x)/12

Autoencoder

Two examples of autoencoder architectures:

Which would lead to better feature learning?

41

M I

↑ I

I I

I I

I I

I I

Autoencoder

Important property of autoencoders: no matter the architecture,

there must always be a bottleneck with fewer parameters than the

input. The bottleneck ensures information is “distilled” from low-level

features to high-level features.

42

8

Autoencoder

Separately name the mapping from input to bottleneck and from

bottleneck to output.

Encoder: e : Rd ! Rk Decoder: d : Rd ! Rk

f (x) =

Often symmetric, but does not have to be.
43

K d

d(e(x)
kd
-

Autoencoder reconstruction

Example image reconstructions from autoencoder:

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Input parameters: d = 49152.

Bottleneck “latent” parameters: k = 1024. 44

Autoencoders for feature extraction

The best autoencoders do not work as well as supervised methods

for feature extraction, but they require no labeled data.1

There are a lot of cool applications of autoencoders beyond feature

learning!

• Learned data compression.

• Denoising and in-painting.

• Data/image synthesis.

1Recent progress on self-supervised learning achieves the best of both worlds

– state-of-the-art feature learning with no labeled data.

45

Autoencoders for data compression

Due to their bottleneck design, autoencoders perform

dimensionality reduction and thus data compression.

Given input x, we can completely recover f (x) from z = e(x). z

typically has many fewer dimensions than x and for a typical image

f (x) will closely approximate x.
46

Autoencoders for image compression

The best lossy compression algorithms are tailor made for specific types

of data:

• JPEG 2000 for images

• MP3 for digital audio.

• MPEG-4 for video.

All of these algorithms take advantage of specific structure in these data

sets. E.g. JPEG assumes images are locally “smooth”.

47

Autoencoders for image compression

With enough input data, autoencoders can be trained to find this

structure on their own.

“End-to-end optimized image compression”, Ballé, Laparra, Simoncelli

Need to be careful about how you choose loss function, design the

network, etc. but can lead to much better image compression than

“hand-tuned” algorithms like JPEG. 48

Autoencoders for image correction

Train autoencoder on uncorrupted images (unsupervised). Pass corrupted

image x through autoencoder and return f (x) as repaired result.

49

Autoencoders learn compressed representations

Why does this work?

Consider 128⇥ 128⇥ 3 images with pixels values in 0, 1 . . . , 255.

How many possible images are there?

If z holds k values in 0, .1, .2, . . . , 1, how many unique images w

can be output by the autoencoder function f ?
50

Autoencoders learn compressed representations

For a good (accurate, small bottleneck) autoencoder, S will closely

approximate I. Both will be much smaller than A.

51

Autoencoders learn compressed representations

f (x) = d(e(x)) projects an image x closer to the space of natural

images.

52

Autoencoders for data generation

Suppose we want to generate a random natural image. How might

we do that?

• Option 1: Draw each pixel value in x uniformly at random.

Draws a random image from A.

• Option 2: Draw x randomly from S, the space of images

representable by the autoencoder.

How do we randomly select an image from S?

53

Autoencoders for data generation

How do we randomly select an image x from S?

Randomly select code z, then set x = d(z).2

2Lots of details to think about here. In reality, people use “variational

autoencoders” (VAEs), which are a natural modification of AEs.

54

Autoencoders for data generation demo

Teal created a demo for the ”Fashion MNIST” data set:

55

Principal Component Analysis (PCA)

55

Principal Component Analysis (PCA)

Rest of lecture: Deeper dive into understanding a simple, but

powerful autoencoder architecture. Specifically we will view

Principal Component Analysis (PCA) as a type of autoencoder.

PCA is the “linear regression” of unsupervised learning: often the

go-to baseline method for feature extraction and dimensionality

reduction.

Very important outside machine learning as well.

56

Principal Component Analysis (PCA)

Consider the simplest possible autoencoder:

• One hidden layer. No non-linearity. No biases.

• Latent space of dimension k .

• Weight matrices are W1 2 Rd⇥k and W2 2 Rk⇥d .

57

w
, Wz

Principal Component Analysis (PCA)

Given input x 2 Rd , what is f (x) expressed in linear algebraic

terms?

f (x)T = xTW1W2

58

IXd Ked

dxK

Principal Component Analysis (PCA)

Encoder: e(x) = xTW1. Decoder: d(z) = zW2

59

=

Principal Component Analysis (PCA)

Given training data set x1, . . . , xn, let X denote our data matrix.

Let X̃ = XW1W2.

60

I
nxd

Frobenius norm

Natural squared autoencoder loss: Minimize L(X, X̃) where:

L(X, X̃) =
nX

i=1

kxi � f (xi)k22

=
nX

i=1

dX

j=1

(xi [j]� f (xi)[j])
2

= kX� X̃k2F

Goal: Find W1,W2 to minimize the Frobenius norm loss

kX� X̃k2F = kX� XW1W2k2F (sum of squared entries).

61

Low-rank approximation

Rank in linear algebra:

• The columns of a matrix with column rank k can all be written as

linear combinations of just k columns.

• The rows of a matrix with row rank k can all be written as linear

combinations of k rows.

• Column rank = row rank = rank.

X̃ is a low-rank matrix. It only has rank k for k ⌧ d .
62

Low-rank approximation

Principal component analysis is the task of finding W1, W2, which

amounts to finding a rank k matrix X̃ which approximates the data

matrix X as closely as possible.

Finding the best W1 and W2 is a non-convex problem. We could

try running an iterative method like gradient descent anyway. But

there is also a direct algorithm!

63

Singular value decomposition

Any matrix X can be written:

Where UTU = I, VTV = I, and �1 � �2 � . . .�d � 0. I.e. U and V are

orthogonal matrices.

This is called the singular value decomposition.

Can be computed in O(nd2) time (faster with approximation algos).
64

x=UErT

O

f

--

Orthogonal matrices

Let u1, . . . ,un 2 Rn denote the columns of U. I.e. the left singular

vectors of X.

kuik22 = uTi uj =

65

y
ChisMi) = 1 Shichj) = 0
- uu = 1

Singular value decomposition

Can read o↵ optimal low-rank approximations from the SVD:

Eckart–Young–Mirsky Theorem: For any k d ,

Xk = Uk⌃kVT
k is the optimal k rank approximation to X:

Xk = argmin
X̃ with rank k

kX� X̃k2F .

66

Inn 31
*

Singular value decomposition

Claim: Xk = Uk⌃kVT
k = XVkVT

k .

So for a model with k hidden variables, we obtain an optimal

autoencoder by setting W1 = Vk , W2 = VT
k . f (x) = xVkVT

k .
67

64

Wir·Note X = U [VT

· gal : Up[x = XVK

-

Principal Component Analysis (PCA)

Usually x’s columns (features) are mean centered and normalized

to variance 1 before computing principal components.
68

Singular value decomposition

Computing the SVD.

• Full SVD:

U,S,V = scipy.linalg.svd(X).

Runs in O(nd2) time.

• Just the top k components:

U,S,V = scipy.sparse.linalg.svds(X, k).

Runs in roughly O(ndk) time.

69

Connection to eigen-decomposition

Recall that for a matrix M 2 Rp⇥p, q is an eigenvector of M if

�q = Mq for any scalar �.

• U’s columns (the left singular vectors) are the orthonormal

eigenvectors of XXT .

• V’s columns (the right singular vectors) are the orthonormal

eigenvectors of XTX.

• �2
i = �i (XXT) = �i (XTX)

Exercise: Verify this directly. This means you can use any

eigensolver for computing the SVD.

70

PCA applications

Like any autoencoder, PCA can be used for:

• Feature extraction

• Denoising and rectification

• Data generation

• Compression

• Visualization

71

