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Overall network architecture
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Each layer contains a 3D tensor of variables. Last few layers are
standard fully connected layers.



Pooling and downsampling
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Understanding layers

What type of convolutional filters do we learn from gradient descent?

Lots of edge detectors in the first layer!

Other layers are harder to understand... but roughly hidden variables
later in the network encode for “higher level features”:
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Understanding layers

How can we know?

Go through dataset and find the inputs that most “excite” a given
neuron h. l.e. for which |h(x)| is largest.




Understanding layers

How can we know?

Alternative approach: Solve the optimization problem
maxy | h(x)| e.g. using gradient descent.



Understanding layers

Early work had some interesting results.

. ‘ .

Flamingo Pelican Hartebeest Billiard Table

Ground Beetle Indian Cobra Station Wagon Black Swan

“Understanding Neural Networks Through Deep Visualization”, Yosinski et al.



Understanding layers

There has been a lot of work on improving these methods by
regularization. l.e. solve max |h(x)| + g(x) where g constrains x to look
more like a “natural image”.

If you are interested in learning more on these techniques, there is a great
Distill article at: https://distill.pub/2017/feature-visualization/.


https://distill.pub/2017/feature-visualization/

Understanding layers

Nodes at different layers have different layers capture increasingly more
abstract concepts.

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a)



Understanding layers

Nodes at different layers have different layers capture increasingly more
abstract concepts.

General obervation: Depth more important than width. Alexnet 2012

had 8 layers, modern convolutional nets can have 100s.
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Deeper and deeper, bigger and bigger

After AlexNet (8 layers, 60 million parameters) achieved state of
the art performance on ImageNet, progress proceeded rapidly:

Classification: ImageNet Challenge top-5 error
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Tricks of the trade

Beyond techniques discussed for general neural nets (back-prop, batch
gradient descent, adaptive learning rates) training deep networks requires
a lot of “tricks".

e Batch normalization (accelerate training).

e Dropout (prevent over-fitting)

e Residual connections (accelerate training, allow for more depth —
100s of layers).

e Data augmentation.

And deep networks require lots of training data and lots of time.
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Batch normalization

Start with any neural network architecture:

class 1

class 2

class 3

For input x,

z=w'x+b

z=1s(2)

where w, b, and s are weights, bias, and non-linearity.
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Batch normalization

Z is a function of the input x. We can write it as Z(x). Consider
the mean and standard deviation of the hidden variable over our

entire dataset xj ..., Xp:
1 n
= Z Z(x;)
j=1
1 n
02 = = > (3x) — )’
j=1

Just as normalization (mean centering, scaling to unit variance) is
sometimes used for input features, batch-norm applies
normalization to learned features.
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Batch normalization

Can add a batch normalization layer after any layer:

Has the effect of mean-centering/normalizing z. Typically we actualy
allow u = s(y - d + c) for learned parameters v and c.

ii5)



Batch normalization

Proposed in 2015: “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”, loffe, Szegedy.
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Figure 2: Single crop validation accuracy of Inception

and its batch-normalized variants, vs. the number of
training steps.

Doesn't change the expressive power of the network, but allows for
significant convergence acceleration. It is not yet well understood why
batch normalizition speeds up training.
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Data augmentation

Great general tool to know about. Main idea:

e More training data typically leads to a more accurate model.

e Artificially enlarge training data with simple transformations.

Augmented Images.

0 w0 mo

Take training images and randomly shift, flip, rotate, skew, darken,
lighten, shift colors, etc. to create new training images. Final classifier
will be more robust to these transformations.
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Deep learning tricks

Need to take a full course on neural networks/deep learning to
learn more! State-of-the-art techniques are constantly evolving.
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Deeper and deeper, bigger and bigger

After AlexNet (8 layers, 60 million parameters) achieved state of
the art performance on ImageNet, progress proceeded rapidly:

Classification: ImageNet Challenge top-5 error
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Generalization for neural networks

Even with weight sharing, convolution, etc. modern neural
networks typically have 100s of millions of parameters. And we
don’t train them with regularization. Intuitively we might expect

them to overfit to training data.
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Generalization for neural networks

In fact, we now know that modern neural nets can easily overfit to

training data. This work showed that we can fit large vision data
sets with random class labels to essentially perfect accuracy.

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Chiyuan Zhang* Samy Bengio Moritz Hardt

M Institute of Technology Google Brain Google Brain
chiyuan@mit.edu bengio@google.com mrtz@google. com
Benjamin Recht! Oriol Vinyals

University of California, Berkeley Google DeepMind

brecht@berkeley.edu vinyals@google.com

But we don't always see a large gap between training and test
error. Don’t take this to mean overfitting isn't a problem
when using neural nets! It's just not always a problem.
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Generalization for neural networks

We even see this lack of overfitting for MNIST data. Check
keras_demo mnist.ipynb | posted on the website:
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Generalization for neural networks

One growing realization is that this phenomena doesn’t only apply to
neural networks — it can also be true for fitting highly-overparameterized

polynomials.
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The choice of training algo (e.g. gradient descent) seems important. 23



Double descent

We sometimes see a “double descent curve” for these models. Test error
is worst for “just barely” overparameterized models, but gets better with
lots of overparameterization.

Training Error
Test Error

Error
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We don’t usually see this same curve for neural networks.
24



Overfitting in neural nets

Take away: Modern neural network overfit, but still seem fairly
robust. Perform well on any new test data we throw that them.

Or do they?

Intriguing properties of neural networks

Christian Szegedy Wojciech Zaremba Ilya Sutskever Joan Bruna
Google Inc. New York University Google Inc. New York University
Dumitru Erhan Ian Goodfellow Rob Fergus
Google Inc. University of Montreal New York University

Facebook Inc.
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Adversarial examples



Adversarial examples

Main discovery: It is possible to find imperceptibly small
perturbations of input images that will fool deep neural networks.
This seems to be a universal phenomenon.

<l

Important: Random perturbations do not work!

—
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Adversarial examples

How to find “good” perturbations:
Fix model fg, input x, correct label y. Consider the loss ¢(6,x, y).

Solve the optimization problem:

max £(0,x + 4,
i )

Can be solved using gradient descent! We just need to compute
the derivative of the loss with respect to the image pixels.

Backprop can do this easily.
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Adversarial examples

Teal put together a really cool lab where you can find your own
adversarial examples for a model called Resnet18. The entire
model + weights are available through PyTorch, so we do not need
to train it ourselves (i.e. this is a pre-trained model).

Noisy Image

Prediction: broccoli
Probability: 0.6289699673652649 Probability: 0.7903719544410706

Prediction: dais)

28



Transfer Learning and Autoencoders



Transfer learning

State-of-the-art supervised learning models like neural networks
learn very good features.

But they require lots and lots of data. ImageNet has 14 million
labeled images. Mostly of everyday objects.
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One-shot learning

What if you want to apply deep convolutional networks to a problem
where you do not have a lot of labeled data in the first place?

quaffle bludger snitch

Example: Classify images of different Quidditch balls.
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One-shot learning

Real example: Classify images of insects for use in agricultural
applications in new localities.

Zero-Shot Insect Detection via Weak Language Supervision

Benjamin Feuer,' Ameya Joshi,' Minsu Cho,' Kewal Jani,' Shivani Chiranjeevi, > Zi Kang Deng, 3
Aditya Balu, > Asheesh K. Singh, > Soumik Sarkar, > Nirav Merchant, 3 Arti Singh, 2
Baskar Ganapathysubr ian, 2 Chinmay Hegde !

! New York University

2 Towa State University
3 University of Arizona

Aedes Vexans Daphnis Neril

i

Creatonotos Gangis

Hypena Deceptalis ~ Pyralis Farinalis
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One-shot learning

A human could probably achieve near perfect classification
accuracy even given access to a single labeled example from
each class:

Major question in ML: How? Can we design ML algorithms
which can do the same?
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Transfer learning

Transfer knowledge from one task we already know how to solve to

another.

For example, we have learned from past experience that balls used
in sports have consistent shapes, colors, and sizes. These features
can be used to distinguish balls of different type.
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Feature learning

Examples of possible high-level features a human would learn:

Features

roundness

size relative
to human
hand

yellowish
color

ed 90 ¢"

10

.2

.1

Classes

1 .6
2 7
1 .1
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Feature learning

If these features are highly informative (i.e. lead to highly

separable data) few training examples are needed to learn.

>

yellowish color

roundness

Might suffice to classify ball using nearest training example in
feature space, even if just a handful of training examples.
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Transfer learning

Empirical observation: Features learned when training models
like deep neural nets seem to capture exactly these sorts of
high-level properties.

224x224x3 224x224x64

low-level
112 112 ¢ 128 features .

7, high-level
%7 2553; 28x512 7:1x5features

)ﬁ 711“% 1x1x4096 1x 1x 1000
I
; \_Y_’

(9 convolution+ReLU
max pooling
// fully nected +ReLU
softmax

X ERY Z ERK VER

Even if we can't put into words what each feature in z means... 36



Transfer learning

This is now a common technique in computer vision:

1. Download network trained on large image classification dataset (e.g.
Imagenet).

2. Extract features z for any new image x by running it through the
network up until layer before last.

3. Use these features in a simpler machine learning algorithm that
requires less data (nearest neighbor, logistic regression, etc.).

This approach has even been used on the quidditch problem:
github.com/thatbrguy/Object-Detection-Quidditch

37


github.com/thatbrguy/Object-Detection-Quidditch

Unsupervised feature learning

Transfer learning: Lots of labeled data for one problem makes up
for little labeled data for another.

But what if we don’t even have labeled data for a sufficiently
related problem?

How to extract features in a data-driven way from unlabeled data

is one of the central problems in unsupervised learning.
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Supervised vs. unsupervised learning

e Supervised learning: All input data examples come with
targets/labels. What machines have been really good at for
the past 8 years.

e Unsupervised learning: No input data examples come with
targets/labels. Interesting problems to solve include
clustering, anomaly detection, semantic embedding, etc.

e Semi-supervised learning: Some (typically very few) input
data examples come with targets/labels. What human babies
are really good at, and we have recently made machines a lot
better at.
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Simple but clever idea: If we have inputs X, ...,x, € RY but

few or no targets yi,..., ¥, just make the inputs the targets.

o Let fy : RY — R? be our model.
e Let Ly be a loss function. E.g. squared loss:
Lo(x) = [[x — fo(x)|3.
e Train model: 6* = ming >.7 ; Lo(x).
If fg is a model that incorporates feature learning, then these
features can be used for supervised tasks.

fg is called an autoencoder. It maps input space to input space
(e.g. images to images, french to french, PDE solutions to PDE
solutions).
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Autoencoder

Two examples of autoencoder architectures:

Input layer Hidden layer Output layer Input layer Hidden layer Output layer
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Autoencoder

Important property of autoencoders: no matter the architecture,
there must always be a bottleneck with fewer parameters than the
input. The bottleneck ensures information is “distilled” from low-level

features to high-level features.

42



Separately name the mapping from input to bottleneck and from
bottleneck to output.

Encoder: e : RY — RK Decoder: d : RY — R¥
f(x) =
Input layer Hidden layers Output layer

\ A

y \

Often symmetric, but does not have to be. 23



Autoencoder reconstruction

Example image reconstructions from autoencoder:

)

mEH A=

e - Lo
IEW IEW

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Input parameters: d = 49152.
Bottleneck “latent” parameters: k = 1024. 44


https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Autoencoders for feature extraction

The best autoencoders do not work as well as supervised methods
for feature extraction, but they require no labeled data.®

There are a lot of cool applications of autoencoders beyond feature

learning!

e learned data compression.
e Denoising and in-painting.

e Data/image synthesis.

!Recent progress on self-supervised learning achieves the best of both worlds
— state-of-the-art feature learning with no labeled data.
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Autoencoders for data compression

Due to their bottleneck design, autoencoders perform
dimensionality reduction and thus data compression.

Input layer Hidden layer Output layer

Encode e Decode d
Given input x, we can completely recover f(x) from z = e(x). z

typically has many fewer dimensions than x and for a typical image

f(x) will closely approximate x. 4



Autoencoders for image compression

The best lossy compression algorithms are tailor made for specific types
of data:

e JPEG 2000 for images
e MP3 for digital audio.
e MPEG-4 for video.

All of these algorithms take advantage of specific structure in these data
sets. E.g. JPEG assumes images are locally “smooth”.

TANDON SCHOOL
OF ENGINEERING
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Autoencoders for image compression

With enough input data, autoencoders can be trained to find this
structure on their own.

EG 2000, 6037 bytes (0.171 bitpx), PSNR: 23.47 dB, MS-SSIM: 09036

“End-to-end optimized image compression”, Ballé, Laparra, Simoncelli

Need to be careful about how you choose loss function, design the
network, etc. but can lead to much better image compression than
“hand-tuned” algorithms like JPEG.
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Autoencoders for image correction

Encoder —»E—o Decoder — .2

Compressed
representation

Noisiy input Denoised image

Image denoising

Image inpainting

Train autoencoder on uncorrupted images (unsupervised). Pass corrupted
image x through autoencoder and return f(x) as repaired result.
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Autoencoders learn compressed representations

Why does this work?

compressed
representation

Nz Vi

Y z, ¥
\/

)

Consider 128 x 128 x 3 images with pixels values in 0,1...,255.
How many possible images are there?

If z holds k values in 0,.1,.2,...,1, how many unique images w
can be output by the autoencoder function f7?
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Autoencoders learn compressed representations

Space of “natural”
images 7

For a good (accurate, small bottleneck) autoencoder, S will closely
approximate Z. Both will be much smaller than A.
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Autoencoders learn compressed representations

Space of “natural”
images 7

f(x) = d(e(x)) projects an image x closer to the space of natural
images.
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Autoencoders for data generation

Suppose we want to generate a random natural image. How might
we do that?

e Option 1: Draw each pixel value in x uniformly at random.
Draws a random image from A.

e Option 2: Draw x randomly from S, the space of images
representable by the autoencoder.

m

How do we randomly select an image from &7
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Autoencoders for data generation

How do we randomly select an image x from S7

compressed
representation

Nz Vi

Randomly select code z, then set x = d(z).

2| ots of details to think about here. In reality, people use “variational
autoencoders” (VAEs), which are a natural modification of AEs.
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Autoencoders for data generation demo

Teal created a demo for the " Fashion MNIST" data set:
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Latent Space Dimension 1
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Principal Component Analysis (PCA)



Principal Component Analysis (PCA)

Rest of lecture: Deeper dive into understanding a simple, but
powerful autoencoder architecture. Specifically we will view
Principal Component Analysis (PCA) as a type of autoencoder.

PCA is the “linear regression” of unsupervised learning: often the
go-to baseline method for feature extraction and dimensionality

reduction.

Very important outside machine learning as well.
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Principal Component Analysis (PCA)

Consider the simplest possible autoencoder:

Input layer Hidden layer Output layer

“bottleneck”

e One hidden layer. No non-linearity. No biases.
e Latent space of dimension k.

e Weight matrices are W; € Rk and W, € RF*9,
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Principal Component Analysis (PCA)

Given input x € RY, what is f(x) expressed in linear algebraic
p

terms?
d k d d
—— St
X w, = f(x)
w, decoder
encoder

f(X) = XTW1W2

58



Principal Component Analysis (PCA)

d k

——— —
encoder l
d
A
[ |
y w, = | f(x) |
Y
k decoder
Encoder: e(x) = x"Wy. Decoder: d(z) = zW,
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Principal Component Analysis (PCA)

Given training data set xi,...,X,, let X denote our data matrix.
Let X = XW;W,.

|
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Frobenius norm

Natural squared autoencoder loss: Minimize L(X,X) where:

ZHX:*f )3
—ZZ iU = Fx)l)®

i=1 j=1
=X = X|[

Goal: Find W1, W, to minimize the Frobenius norm loss
X — X||2 = [|X — XW;W3||% (sum of squared entries).
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Low-rank approximation

Rank in linear algebra:
e The columns of a matrix with column rank k can all be written as
linear combinations of just k columns.

e The rows of a matrix with row rank k can all be written as linear
combinations of k rows.

e Column rank = row rank = rank.

k d d

r . 1 [ : ) [ 1
4 w,
)

Z=XW, = X
Z,

Xis a . It only has rank k for k < d.

62



Low-rank approximation

Principal component analysis is the task of finding W1, W5, which
amounts to finding a rank k matrix X which approximates the data

matrix X as closely as possible.

Finding the best W1 and W, is a non-convex problem. We could
try running an iterative method like gradient descent anyway. But
there is also a direct algorithm!

63



Singular value decomposition

Any matrix X can be written:

d

left singular vectors

singular values

right singular vectors

U

Where UTU =1, V'V =1 and oy > 05> ...04>0. lLe. Uand V are
orthogonal matrices.

]
0,

\'A

This is called the singular value decomposition.

Can be computed in O(nd?) time (faster with approximation algos).
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Orthogonal matrices

Let uy,...,u, € R"” denote the columns of U. l.e. the left singular
vectors of X.

U’ u =|,"

i3 = ujuj =
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Singular value decomposition

Can read off optimal low-rank approximations from the SVD:

d left singular vectors  singular values right singular vectors

A

0,
Oy

X, = [ Uy z

Eckart—Young—Mirsky Theorem: For any k < d,
Xk = UkaVkT is the optimal k rank approximation to X:

X, = argmin X — X||2.

X with rank < k
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Singular value decomposition

Claim: X, = U, X, V] = XV, V]

So for a model with k hidden variables, we obtain an optimal
autoencoder by setting Wy = V., W, = VZ—. f(x) = kaVZ—.
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Principal Component Analysis (PCA)

k d d
— ! \ i )
Z1 VkT
Z . .
2 k principal
components
Z= XV, = X
Zn
n loading
vectors

Usually x’s columns (features) are mean centered and normalized

to variance 1 before computing principal components.
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Singular value decomposition

Computing the SVD.

e Full SVD:
U,8,V = scipy.linalg.svd(X).

Runs in O(nd?) time.
e Just the top k components:
U,S,V = scipy.sparse.linalg.svds(X, k).
Runs in roughly O(ndk) time.
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