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Overall network architecture
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Each layer contains a 3D tensor of variables. Last few layers are
standard fully connected layers.



Pooling and downsampling

Max Pooling Average Pooling
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Understanding layers

What type of convolutional filters do we learn from gradient descent?

Lots of edge detectors in the first layer!

Other layers are harder to understand... but roughly hidden variables
later in the network encode for “higher level features”:
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Understanding layers

How can we know?

Go through dataset and find the inputs that most “excite” a given
neuron h. l.e. for which |h(x)| is largest.




Understanding layers

How can we know?

Alternative approach: Solve the optimization problem
maxy | h(x)| e.g. using gradient descent.



Understanding layers

Early work had some interesting results.

Flamingo Pelican Hartebeest Billiard Table

Ground Beetle Indian Cobra Station Wagon Black Swan

“Understanding Neural Networks Through Deep Visualization”, Yosinski et al.



Understanding layers

There has been a lot of work on improving these methods by
regularization. l.e. solve max |h(x)| + g(x) where g constrains x to look
more like a “natural image”.

If you are interested in learning more on these techniques, there is a great
Distill article at: https://distill.pub/2017/feature-visualization/.


https://distill.pub/2017/feature-visualization/

Understanding layers

Nodes at different layers have different layers capture increasingly more
abstract concepts.

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a)



Understanding layers

Nodes at different layers have different layers capture increasingly more
abstract concepts.

General obervation: Depth more important than width. Alexnet 2012

had 8 layers, modern convolutional nets can have 100s.
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Deeper and deeper, bigger and bigger

After AlexNet (8 layers, 60 million parameters) achieved state of
the art performance on ImageNet, progress proceeded rapidly:

Classification: ImageNet Challenge top-5 error
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Tricks of the trade

Beyond techniques discussed for general neural nets (back-prop, batch
gradient descent, adaptive learning rates) training deep networks requires
a lot of “tricks".

e Batch normalization (accelerate training).

e Dropout (prevent over-fitting)

e Residual connections (accelerate training, allow for more depth —
100s of layers).

e Data augmentation.

And deep networks require lots of training data and lots of time.
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Batch normalization

Start with any neural network architecture:

class 1

class 2

class 3

For input x,

z=w'x+b

z=1:5(2)

where w, b, and s are weights, bias, and non-linearity.
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Batch normalization

Z is a function of the input x. We can write it as Z(x). Consider
the mean and standard deviation of the hidden variable over our

entire dataset xj ..., Xp:
1 n
= Z Z(x;)
j=1
1 n
02 = = > (3x) — )’
j=1

Just as normalization (mean centering, scaling to unit variance) is
sometimes used for input features, batch-norm applies
normalization to learned features.
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Batch normalization

Can add a batch normalization layer after any layer:

Has the effect of mean-centering/normalizing z. Typically we actualy
allow u = s(y - d + c) for learned parameters v and c.

ii5)



Batch normalization

Proposed in 2015: “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”, loffe, Szegedy.

- = = Inception
- - BN-Baseline
BN-x5
BN-x30

+ BN-x5-Sigmoid
4@ Steps to match Inception

oM 15M 20M 25M 3om
Figure 2: Single crop validation accuracy of Inception

and its batch-normalized variants, vs. the number of
training steps.

Doesn't change the expressive power of the network, but allows for
significant convergence acceleration. It is not yet well understood why
batch normalizition speeds up training.
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Data augmentation

Great general tool to know about. Main idea:

e More training data typically leads to a more accurate model.

e Artificially enlarge training data with simple transformations.

Augmented Images.

0 w0 mo

Take training images and randomly shift, flip, rotate, skew, darken,
lighten, shift colors, etc. to create new training images. Final classifier
will be more robust to these transformations.
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Deep learning tricks

Need to take a full course on neural networks/deep learning to
learn more! State-of-the-art techniques are constantly evolving.
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Deeper and deeper, bigger and bigger

After AlexNet (8 layers, 60 million parameters) achieved state of
the art performance on ImageNet, progress proceeded rapidly:

Classification: ImageNet Challenge top-5 error
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Generalization for neural networks

Even with weight sharing, convolution, etc. modern neural
networks typically have 100s of millions of parameters. And we
don’t train them with regularization. Intuitively we might expect

them to overfit to training data.
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Generalization for neural networks

In fact, we now know that modern neural nets can easily overfit to

training data. This work showed that we can fit large vision data
sets with random class labels to essentially perfect accuracy.

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Chiyuan Zhang* Samy Bengio Moritz Hardt
Institute of y Google Brain Google Brain

chiyuan@mit.edu bengio@google. com mrtz@google. com

Benjamin Recht! Oriol Vinyals

University of California, Berkeley Google DeepMind

brecht@berkeley.edu vinyals@google.com

But we don't always see a large gap between training and test
error. Don’t take this to mean overfitting isn't a problem
when using neural nets! It's just not always a problem.
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Generalization for neural networks

We even see this lack of overfitting for MNIST data. Check
keras_demo mnist.ipynb | posted on the website:
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Generalization for neural networks

One growing realization is that this phenomena doesn’t only apply to
neural networks — it can also be true for fitting highly-overparameterized

polynomials.
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The choice of training algo (e.g. gradient descent) seems important. 23



Double descent

We sometimes see a “double descent curve” for these models. Test error
is worst for “just barely” overparameterized models, but gets better with
lots of overparameterization.

Training Error
Test Error

Error
1.0 15

0.5

0.0

T T T T T
2 5 10 20 50

Degrees of Freedom

We don’t usually see this same curve for neural networks.
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Overfitting in neural nets

Take away: Modern neural network overfit, but still seem fairly
robust. Perform well on any new test data we throw that them.

Or do they?

Intriguing properties of neural networks

Christian Szegedy Wojciech Zaremba Ilya Sutskever Joan Bruna
Google Inc. New York University Google Inc. New York University
Dumitru Erhan Ian Goodfellow Rob Fergus
Google Inc. University of Montreal New York University

Facebook Inc.
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Adversarial examples



Adversarial examples

Main discovery: It is possible to find imperceptibly small
perturbations of input images that will fool deep neural networks.
This seems to be a universal phenomenon.

<l

Important: Random perturbations do not work!

—

26



Adversarial examples

How to find “good” perturbations:
Fix model fy, input x, correct label y. Consider the loss ¢(6, x, y).

Solve the optimization problem:

max £(0,x + 4,
s A )

Can be solved using gradient descent! We just need to compute
the derivative of the loss with respect to the image pixels.

Backprop can do this easily.

27



Adversarial examples

Teal put together a really cool lab where you can find your own
adversarial examples for a model called Resnetl8. The entire
model + weights are available through PyTorch, so we do not need
to train it ourselves (i.e. this is a pre-trained model).

Noise Noisy Image

Prediction: broccoli

Prediction: dais)
Probability: 0.6289699673652649 Probability: 0.7903719544410706

28



Transfer Learning and Autoencoders



Transfer learning

State-of-the-art supervised learning models like neural networks
learn very good features.

But they require lots and lots of data. ImageNet has 14 million
labeled images. Mostly of everyday objects.
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One-shot learning

What if you want to apply deep convolutional networks to a problem
where you do not have a lot of labeled data in the first place?

quaffle bludger snitch

Example: Classify images of different Quidditch balls.
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One-shot learning

Real example: Classify images of insects for use in agricultural
applications in new localities.

Zero-Shot Insect Detection via Weak Language Supervision

Benjamin Feuer,' Ameya Joshi,' Minsu Cho,' Kewal Jani,' Shivani Chiranjeevi, > Zi Kang Deng, 3
Aditya Balu, > Asheesh K. Singh, > Soumik Sarkar, > Nirav Merchant, 3 Arti Singh, 2
Baskar Ganapathysubr ian, 2 Chinmay Hegde !

! New York University

2 Towa State University
3 University of Arizona

Aedes Vexans Daphnis Neril

i

Creatonotos Gangis

Hypena Deceptalis ~ Pyralis Farinalis
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One-shot learning

A human could probably achieve near perfect classification
accuracy even given access to a single labeled example from
each class:

Major question in ML: How? Can we design ML algorithms
which can do the same?
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Transfer learning

Transfer knowledge from one task we already know how to solve to

another.

For example, we have learned from past experience that balls used
in sports have consistent shapes, colors, and sizes. These features
can be used to distinguish balls of different type.
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Feature learning

Examples of possible high-level features a human would learn:

Features

roundness

size relative
to human
hand

yellowish
color

ed 90 ¢"

10

.2

.1

Classes

1 .6
2 7
1 .1
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Feature learning

If these features are highly informative (i.e. lead to highly

separable data) few training examples are needed to learn.

>

yellowish color

roundness

Might suffice to classify ball using nearest training example in
feature space, even if just a handful of training examples.
35



Transfer learning

Empirical observation: Features learned when training models
like deep neural nets seem to capture exactly these sorts of
high-level properties.

224x224x3 224x224x64

low-level
112 112 ¢ 128 features .

7, high-level
%7 2553; 28x512 7:1x5features

)ﬁ 711“% 1x1x4096 1x 1x 1000
I
; \_Y_’

(9 convolution+ReLU
max pooling
// fully nected +ReLU
softmax

X ERY Z ERK VER

Even if we can't put into words what each feature in z means... 36



Transfer learning

This is now a common technique in computer vision:

1. Download network trained on large image classification dataset (e.g.
Imagenet).

2. Extract features z for any new image x by running it through the
network up until layer before last.

3. Use these features in a simpler machine learning algorithm that
requires less data (nearest neighbor, logistic regression, etc.).

This approach has even been used on the quidditch problem:
github.com/thatbrguy/Object-Detection-Quidditch

37


github.com/thatbrguy/Object-Detection-Quidditch

Unsupervised feature learning

Transfer learning: Lots of labeled data for one problem makes up
for little labeled data for another.

But what if we don’t even have labeled data for a sufficiently
related problem?

How to extract features in a data-driven way from unlabeled data

is one of the central problems in unsupervised learning.
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Supervised vs. unsupervised learning

e Supervised learning: All input data examples come with
targets/labels. What machines have been really good at for
the past 8 years.

e Unsupervised learning: No input data examples come with
targets/labels. Interesting problems to solve include
clustering, anomaly detection, semantic embedding, etc.

e Semi-supervised learning: Some (typically very few) input
data examples come with targets/labels. What human babies
are really good at, and we have recently made machines a lot
better at.

39



Simple but clever idea: If we have inputs X, ...,x, € RY but

few or no targets yi,..., ¥, just make the inputs the targets.

e Let fy : RY — R? be our model.
e Let Ly be a loss function. E.g. squared loss:
Lo(x) = [[x — fo(x)|3.
e Train model: 6* = ming >.7 ; Lo(x).
If fg is a model that incorporates feature learning, then these
features can be used for supervised tasks.

fg is called an autoencoder. It maps input space to input space
(e.g. images to images, french to french, PDE solutions to PDE
solutions).

40



Autoencoder

Two examples of autoencoder architectures:

Input layer Hidden layer Output layer Input layer Hidden layer Output layer

41



Autoencoder

Important property of autoencoders: no matter the architecture,
there must always be a bottleneck with fewer parameters than the
input. The bottleneck ensures information is “distilled” from low-level

features to high-level features.

42



Separately name the mapping from input to bottleneck and from
bottleneck to output.

Encoder: e : RY — RK Decoder: d : RY — R¥
f(x) =
Input layer Hidden layers Output layer

\ A

y \

Often symmetric, but does not have to be. 23



Autoencoder reconstruction

Example image reconstructions from autoencoder:

)

mEH A=

e - Lo
IEW IEW

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Input parameters: d = 49152.
Bottleneck “latent” parameters: k = 1024. 44


https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Autoencoders for feature extraction

The best autoencoders do not work as well as supervised methods
for feature extraction, but they require no labeled data.®

There are a lot of cool applications of autoencoders beyond feature

learning!

e learned data compression.
e Denoising and in-painting.

e Data/image synthesis.

!Recent progress on self-supervised learning achieves the best of both worlds
— state-of-the-art feature learning with no labeled data.

45



Autoencoders for data compression

Due to their bottleneck design, autoencoders perform
dimensionality reduction and thus data compression.

Input layer Hidden layer Output layer

Encode e Decode d
Given input x, we can completely recover f(x) from z = e(x). z

typically has many fewer dimensions than x and for a typical image

f(x) will closely approximate x. 4



Autoencoders for image compression

The best lossy compression algorithms are tailor made for specific types
of data:

e JPEG 2000 for images
e MP3 for digital audio.
e MPEG-4 for video.

All of these algorithms take advantage of specific structure in these data
sets. E.g. JPEG assumes images are locally “smooth”.

TANDON SCHOOL
OF ENGINEERING
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Autoencoders for image compression

With enough input data, autoencoders can be trained to find this
structure on their own.

EG 2000, 6037 bytes (0.171 bitpx), PSNR: 23.47 dB, MS-SSIM: 09036

“End-to-end optimized image compression”, Ballé, Laparra, Simoncelli

Need to be careful about how you choose loss function, design the
network, etc. but can lead to much better image compression than
“hand-tuned” algorithms like JPEG.
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Autoencoders for image correction

Encoder —»E—o Decoder — .2

Compressed
representation

Noisiy input Denoised image

Image denoising

Image inpainting

Train autoencoder on uncorrupted images (unsupervised). Pass corrupted
image x through autoencoder and return f(x) as repaired result.

49



Autoencoders learn compressed representations

Why does this work?

compressed
representation

Nz Vi

Y z, ¥
\/

)

Consider 128 x 128 x 3 images with pixels values in 0,1...,255.
How many possible images are there?

If z holds k values in 0,.1,.2,...,1, how many unique images w
can be output by the autoencoder function f7?
50



Autoencoders learn compressed representations

Space of “natural”
images 7

For a good (accurate, small bottleneck) autoencoder, S will closely
approximate Z. Both will be much smaller than A.

Bl



Autoencoders learn compressed representations

Space of “natural”
images 7

f(x) = d(e(x)) projects an image x closer to the space of natural
images.
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Autoencoders for data generation

Suppose we want to generate a random natural image. How might
we do that?

e Option 1: Draw each pixel value in x uniformly at random.
Draws a random image from A.

e Option 2: Draw x randomly from S, the space of images
representable by the autoencoder.

m

How do we randomly select an image from &7
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Autoencoders for data generation

How do we randomly select an image x from S7

compressed
representation

Nz Vi

Randomly select code z, then set x = d(z).

2| ots of details to think about here. In reality, people use “variational
autoencoders” (VAEs), which are a natural modification of AEs.
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Autoencoders for data generation demo

Teal created a demo for the " Fashion MNIST" data set:

I T A et ol ot s b - )
L5 L L
1.0 e B B

Latent Space Dimension 2
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Principal Component Analysis (PCA)



Principal Component Analysis (PCA)

Rest of lecture: Deeper dive into understanding a simple, but
powerful autoencoder architecture. Specifically we will view
Principal Component Analysis (PCA) as a type of autoencoder.

PCA is the “linear regression” of unsupervised learning: often the
go-to baseline method for feature extraction and dimensionality

reduction.

Very important outside machine learning as well.
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Principal Component Analysis (PCA)

Consider the simplest possible autoencoder:

Input layer Hidden layer Output layer

“bottleneck”

e One hidden layer. No non-linearity. No biases.
e Latent space of dimension k.

e Weight matrices are W; € Rk and W, € RF*9,

57



Principal Component Analysis (PCA)

Given input x € RY, what is f(x) expressed in linear algebraic
p

terms?
d k d d
—— St
X w, = f(x)
w, decoder
encoder

f(X) T = XTW1W2
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Principal Component Analysis (PCA)

d k

——— —
encoder l
d
A
[ |
y w, = | f(x) |
Y
k decoder
Encoder: e(x) = x"Wy. Decoder: d(z) = zW,
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Principal Component Analysis (PCA)

Given training data set xi,...,X,, let X denote our data matrix.
Let X = XW;W,.

|
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Frobenius norm

Natural squared autoencoder loss: Minimize L(X,X) where:

ZHX:*f )3
—ZZ (xil] = F(x)))°

i=1 j=1
=X - X|[

Goal: Find W1, W, to minimize the Frobenius norm loss
X — X||2 = [|X — XW;W3||% (sum of squared entries).
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Low-rank approximation

Rank in linear algebra:
e The columns of a matrix with column rank k can all be written as
linear combinations of just k columns.

e The rows of a matrix with row rank k can all be written as linear
combinations of k rows.

e Column rank = row rank = rank.

k d d

r . 1 [ : ) [ 1
4 w,
)

Z=XW, = X
Z,

Xis a . It only has rank k for k < d.
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Low-rank approximation

Principal component analysis is the task of finding W1, W5, which
amounts to finding a rank k matrix X which approximates the data

matrix X as closely as possible.

Finding the best W1 and W, is a non-convex problem. We could
try running an iterative method like gradient descent anyway. But
there is also a direct algorithm!
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Singular value decomposition

Any matrix X can be written:

d

left singular vectors

singular values

right singular vectors

U

Where UTU =1, V'V =1 ando; > 05> ...04>0. lLe. Uand V are
orthogonal matrices.

]
0,

\'A

This is called the singular value decomposition.

Can be computed in O(nd?) time (faster with approximation algos).
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Orthogonal matrices

Let uy,...,u, € R"” denote the columns of U. l.e. the left singular
vectors of X.

U’ u =|,"

i3 = ujuj =
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Singular value decomposition

Can read off optimal low-rank approximations from the SVD:

d left singular vectors  singular values right singular vectors

A

0,
Oy

X, = [ Uy z

Eckart—Young—Mirsky Theorem: For any k < d,
Xk = UkaVkT is the optimal k rank approximation to X:

X, = argmin X — X||2.

X with rank < k
66



Singular value decomposition

Claim: X, = U, X, V] = XV, V]

So for a model with k hidden variables, we obtain an optimal
autoencoder by setting Wy = V., W, = VZ—. f(x) = kaVZ—.
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Principal Component Analysis (PCA)

k d d
— ! \ i )
Z1 VkT
Z . .
2 k principal
components
Z= XV, = X
Zn
n loading
vectors

Usually x’s columns (features) are mean centered and normalized

to variance 1 before computing principal components.
68



Singular value decomposition

Computing the SVD.

e Full SVD:
U,8,V = scipy.linalg.svd(X).

Runs in O(nd?) time.
e Just the top k components:
U,S,V = scipy.sparse.linalg.svds(X, k).
Runs in roughly O(ndk) time.
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Connection to eigen-decomposition

Recall that for a matrix M € RP*P, q is an eigenvector of M if
Agq = Mq for any scalar \.

e U’s columns (the left singular vectors) are the orthonormal
eigenvectors of XX 7.
e V's columns (the right singular vectors) are the orthonormal

eigenvectors of X7 X.
o 02 = )\ (XXT) = X\(XTX)

Exercise: Verify this directly. This means you can use any

eigensolver for computing the SVD.
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PCA applications

Like any autoencoder, PCA can be used for:

e Feature extraction

e Denoising and rectification
e Data generation

e Compression

Visualization

denoising

synthetic data generation

71
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Low rank approximation

Error vs. k is dictated by X's singular values. The singular values
are often called the spectrum of X.

d
IX=XellF= Y of.
i=k+1

0 100 200 300 400 500 600 700 800
rank k
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Column redundancy

Colinearity of data features leads to an approximately low-rank

data matrix.
bedrooms| bathrooms| sq.ft.|floors
home 1 2 2 1800
home 2 4 2.5 2700 1
home n 5 35 3600 3

sale price /= 1.05 - list price.

property tax /= .01 - list price.
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Column redundancy

Sometimes these relationships are simple, other times more
complex. But as long as there exists linear relationships between

features, we will have a lower rank matrix.

. . 1
yard size ~ lot size — 5 ' square footage.

—

1
cumulative GPA A\:Z -year 1 GPA + 7 -year 2 GPA

1 1
—l—Z-year 3 GPA+Z-year 4 GPA.
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Low-rank intuition

Two other examples of data with good low-rank approximations:

1. Genetic data:

single nucleotide polymorphisms (SNPs) loci
144 312 436 800 943
individual 1 A
individual 2

individualn A A

2. “Term-document” matrix with bag-of-words data:

%, %o,
%o o, sg ¢

doc_1

doc_n

0

)

%

%
0o
0
1
1
1

rloflr|o]|e
-

1
0
0
0
0

o|loflr|r]|e
o|lo|lo|o|e

o|lo|lo|r|r
o|lo|lo|o|r
| r|lo|o

o
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Examples of low-rank structure

SNPs matrices tend to be very low-rank.

single nucleotide polymorphisms (SNPs) loci
144 312 436 800 943
individual 1 A
individual 2

i‘r.1'dividual n A A

Most of the information in x is explained by just a few latent
variable.

z

X X
12 2 & 3 af e [ ey [

encode decode
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Examples of low-rank structure

“Genes Mirror Geography Within Europe” — Nature, 2008.

X V4 X
1 2 2 4 3 1 w5 .21 ) |

encode decode

In data collected from European populations, latent variables
capture information about geography.

z[1] ~ relative north-south position of birth place

z[2] ~ relative east-west position of birth place

Individuals born in similar places tend to have similar genes.
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PCA for data visualization

“Genes Mirror Geography Within Europe” — Nature, 2008.

Genetic data can be nicely visualized using PCA! Plot each data
example x using two loading variables in z. 79



Principal components

For more complex data, what do principal components and loading
vectors look like?

80



Principal components

MNIST principal components:

k principal
compgnents

—a

n loading
vectors

Often principal components are difficult to interpret. 81



Loading vectors

What do the loading vectors looks like?

The loading vector z for an example x contains coefficients which
recombine the top k principal components vi,...,vx to approximately
reconstruct x.

—x
—Q

@006

Provide a short “finger print” for any image x which can be used to

reconstruct that image.
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Loading vectors: similarity view

For any x with loading vector z, z; is the inner product similarity

between x and the it" principal component v;.

k d
|

r 1 [ 1|
X ~ Z ;:‘V‘I
===
k principal
components

2= XV,

n loading
vectors

z1=(m,n) Zf(m'm) z3=(xm,$)
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Loading vectors: projection view

So we approximate x ~ X = (

Z,V,

Since v1,..., Vv, are orthonormal, this operation is a projection
onto first k principal components.

l.e. we are projecting x onto the k-dimensional subspace spanned

by vi,...,vk.
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Loading vectors: projection view

For an example x;, the loading vector z; contains the coordinates
in the projection space:

~ V1 v
Xy .
.V, '
0 o
i1° X3 o
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Similarity preservation

Important takeaway for data visualization and more: Latent
feature vectors preserve similarity and distance information in the

original data.

Let X1 ...,x, € RY be our original data vectors, z1...,z, € R¥ be
our loading vectors (encoding), and X; ..., %, € RY be our

low-rank approximated data.
We have:
52 2
1%il12 = [1zill2
<)~(i>ij> = <Zf>zj>

S o2 2
1% — %;l|2 = [1zi — zj][3

86



Similarity preservation

Conclusion: If our data had a good low rank approximation, we
expect that:

2 2
[xill2 = [zill3
<X,',XJ'> ~ <Z,’,Zj>

2 o 2
Ixi = xjll2 ~ ||zi = zjll3
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Term document matrix

Word-document matrices tend to be low rank.

olo|lr|r|o
olo|lo|o|o
olo|lo|r|r
olo|lo|o|r

rlr|lo|e

doc_n

Documents tend to fall into a relatively small number of different
categories, which use similar sets of words:

e Financial news: markets, analysts, dow, rates, stocks
e US Politics: president, senate, pass, slams, twitter, media

e StackOverflow posts: python, help, convert, javascript
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Latent semantic analysis

Latent semantic analysis = PCA applied to a word-document
matrix (usually from a large corpus). One of the most fundamental
techniques in natural language processing (NLP).

term-document matrix

4
o g, g %, %

doc_ 1o |o |1 0

0

doc_2

ololo|r|m

ololo|o|m

o|e|o|e
7% " P Y

ololr|e

doc_n

plrlo|e

PCA

single docuement

BOW features

Pz

X

LSA features

word vectors

document vectors

Each column of z corresponds to a latent “category” or “topic”.
Corresponding row in Y corresponds to the “frequency” with which
different words appear in documents on that topic.
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Latent semantic analysis

Similar documents have similar LSA document vectors. l.e. (z;,z;)
is large.

e z; provides a more compact “finger print” for documents than
the long bag-of-words vectors. Useful for e.g search engines.

e Comparing document vectors is often more effective than
comparing raw BOW features. Two documents can have
(zi,zj) large even if they have no overlap in words. E.g.
because both share a lot of words with words with another
document k, or with a bunch of other documents.
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Same fingerprinting idea was also important in early facial
recognition systems based on “eigenfaces”:

Each image above is one of the principal components of a dataset
containing images of faces.
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Word embeddings

term-document matrix single docuement

ol % BOW features LSA features
doctlo|of1fo|ofa[1]|0o]|0

as —
aoc2fo oo |1|o[1]o]o]o Y
: : : Z : : : Z j Z X = word vectors
docnf 10 0|0 o]o]o]1]s

document vectors

e (yi,z,) = 1 when doc, contains word;.
e If word; and word; both appear in doc,, then
(yi,za) = (yj,2a) = 1, so we expect (yj,y;) to be large.

Za
Yj

Vi

If two words appear in the same document their, word vectors tend

to point more in the same direction. 92



Semantic embeddings

Result: Map words to numerical vectors in a semantically
meaningful way. Similar words map to similar vectors. Dissimilar
words to dissimilar vectors.

excellent
easy great

diffucult

Extremely useful “side-effect” of LSA.

Capture e.g. the fact that “great” and “excellent” are near
synonyms. Or that “difficult” and “easy” are antonyms. 93



Word embeddings: motivating problem

Review 1: Very small and handy for traveling or camping.
Excellent quality, operation, and appearance.

Review 2: So far this thing is great. Well designed, compact, and
easy to use. I'll never use another can opener.

Review 3: Not entirely sure this was worth $20. Mom couldn't
figure out how to use it and it’s fairly difficult to turn for someone

with arthritis.

Goal is to classify reviews as “positive” or “negative”.
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Bag-of-words features

Vocabulary: Small, handy, excellent, great, quality, compact, easy,
difficult.

Review 1: Very small and handy for traveling or camping. Excellent
quality, operation, and appearance.

[ ) ) ) ) ) ) ) ]

Review 2: So far this thing is great. Well designed, compact, and easy
to use. I'll never use another can opener.

[ ? I ’ I ? Y ’ ]

Review 3: Not entirely sure this was worth $20. Mom couldn’t figure
out how to use it and it's fairly difficult to turn for someone with arthritis.

[ ) ) ) ) ) ) Y ]
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Semantic embeddings

Bag-of-words approach typically only works for large data sets.

The features do not capture the fact that “great” and “excellent” are
near synonyms. Or that "difficult” and “easy” are antonyms.

excellent
easy great

diffucult

This can be addressed by first mapping words to semantically meaningful
vectors. That mapping can be trained using a much large corpus of text
than the data set you are working with (e.g. Wikipedia, Twitter, news
data sets).
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Using word embeddings

How to go from word embeddings to features for a whole sentence
or chunk of text?

remove
“stop words”

Very small and handy for traveling or camping. ‘ [ small, handy, traveling, camping ]

word
embedding

[ small, handy, traveling, camping] ‘

ViV2 ... Yq

ViV, ...V
d feature vector
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Using word embeddings

A few simple options:

— 15x9q
Feature vector x = 5 2i=1Yq-

small

average

useless R 7

average

heavy

Feature vector x = [y1,Y¥2,...,Yql

ViV2 ... Vg

x
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Using word embeddings

To avoid issues with inconsistent sentence length, word ordering,
etc., can concatenate a fixed number of top principal components

of the matrix of word vectors:

SVD

V1Y - Yq VaV; Vi

x

There are much more complicated approaches that account for
word position in a sentence. Lots of pretrained libraries available
(e.g. Facebook's InferSent). 99



Word embeddings

Another view on word embeddings from LSA:

% b5, %, %y
doc ffo|of1|o0ofo|1|[1|0]0
doc 2§ o 0 1 0 1 0 0 0 Y
~
I I I I L e Z word vectors
0 0 0 0 0 0 0 1 1
doc_nj 1 0 0 0 0 0 0 1 1
. document
term-document matrix X
vectors

We chose Z to equal XV, =UxX, and Y = VkT.
Could have just as easily set Z= U, and Y = ZkaT, so Z has

orthonormal columns.
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Word embeddings

Another view on word embeddings from LSA:

% 6‘9/1/’%@@ %
doc_1) o 0 1 0 0 1 1 0 0
doc_2| o o|1flo|1|o|0]0 Y
~
I ) B Z word vectors
] ] 0 0 0 0 0 1 1
dcnfji1|o|o|ofofo|o0o|1]|1
q document
term-document matrix
X vectors

o X~ZY
e XTX~YT2TZY=YTY
e So for word; and word;, (y;,y;j) ~ [XTX]i,j-

What does the i, entry of X" X reprent?
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Word embeddings

5 G, %
doc1fo|o|1|o0ofo0of1|212]|0]|0
doc_2) o ] 0 1 0 1 0 0 ] Y
~
il I ) L e Z word vectors
0 0 0 0 0 0 0 1 1
doc_nj 1 0 0 0 0 0 0 1 1
q document
term-document matrix
X vectors
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Word embeddings

(yi,yj) is larger if word; and word; appear in more documents together
(high value in word-word co-occurrence matrix, X7 X). Similarity of
word embeddings mirrors similarity of word context.

General word embedding recipe:
1. Choose similarity metric k(word;, word;) which can be computed for
any pair of words.
2. Construct similarity matrix M € R"*" with M, j = k(word;, word}).
3. Find low rank approximation M ~ YTY where Y € R¥*".

4. Columns of Y are word embedding vectors.
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Word embeddings

=
%o s, %&8 . %,

%, %

Yo

5. %,
5 sy

%o

How do current state-of-the-art methods differ from LSA?

e Similarity based on co-occurrence in smaller chunks of words. E.g.
in sentences or in any consecutive sequences of 3, 4, or 10 words.
e Usually transformed in non-linear way. E.g.
k(word;, word;) = p’(’,.()’g()j) where p(i, ;) is the frequency both i,

appeared together, and p(i), p(j) is the frequency either one
appeared.
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Modern word embeddings

Computing word similarities for “window size” 4:

dog park crowded the

The girl walks to her|dog to the park.

It can take a long time to parkyour car in NYC.
|The dog park isalways|crowded on Saturdays.

Sop

0 2 0 3

The girl walks to her dog to the park.
It can take a long time to park your car in NYC.
The dog|park is always crowded‘on Saturdays.

The girl walks to

It can take a long time to park your car in NYC.

The dog park is|always crowded on Saturdays.

papmosd  Jed

9yl
w
N
o
o
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Modern word embeddings

Current state of the art models: G1oVE, word2vec.

e word2vec was originally presented as a shallow neural network
model, but it is equivalent to matrix factorization method
(Levy, Goldberg 2014).

e For word2vec, similarity metric is the “point-wise mutual

information”: log p?i()i:.()j)'
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Caveat about factorization
R T
s Y

/

>
. g, g,

SVD will not return a symmetric factorization in general. In fact, if
M is not positive semidefinite3 then the optimal low-rank

approximation does not have this form.

3].e., k(word;, word;) is not a positive semidefinite kernel.
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Caveat about factorization

<, /0‘90/7%@ e %y

%

v

. /as,,”"%%

e For each word i we get a left and right embedding vector w;
and y;. It's reasonable to just use one or the other.

o If (yj,y;) is large and positive, we expect that y; and y; have
similar similarity scores with other words, so they typically are
still related words.

e Another option is to use as your features for a word the

concatenation [w;, y]
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Easiest way to use word embeddings

If you want to use word embeddings for your project, the easiest

approach is to use pre-trained word vectors:

e Original gloVe website:
https://nlp.stanford.edu/projects/glove/.

e Compilation of many sources:
https://github.com/3Top/word2vec-api
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Word embeddings math

Lots of cool demos online for what can be done with these

embeddings. E.g. “vector math” to solve analogies.

Vector Math

King
©/% Queen
King - Man Man
Woman
e slower
\ she slow /
cat
himself faster slowest
dog \ herself

cats fast

France
longer

dogs England /\
fastest
long
Paris Italy
Londar/
longest
110

Rome




Semantic embeddings

The same approach used for word embeddings can be used to
obtain meaningful numerical features for any other data where
there is a natural notion of similarity.

item1 item2 itemn

similarity matrix

M

L
=

Tway  Lway

way

For example, the items could be nodes in a social network graph.
Maybe be want to predict an individuals age, level of interest in a
particular topic, political leaning, etc.
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Node embeddings

13
b
El
)
]
| 8
4
lo
B
"
'S

~
-
a

Generate random walks (e.g. “sentences” of nodes) and measure
similarity by node co-occurence frequency.

1,3,4,45/2,1,2,5
6,8,6,4,3,1,5,3, 4
7,86,8,78,6,8,6

4,6,8,6,4,3,1,2,5
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Node embeddings

Again typically normalized and apply a non-linearity (e.g. log) as in
word embeddings.

node1 node2 .. node 8
1,3,4,45,2,1,2,5 U !
6,8,6,43,1,5,3, 4 il , |, .
7,8,6,8,7,8,6,8,6 o
4,6,8,6,4,3,1,2,5 3

@ 1 0 0

Popular implementations: DeepWalk, Node2Vec. Again initially
derived as simple neural network models, but are equivalent to
matrix-factorization (Qiu et al. 2018).
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