
CS-GY 6923: Lecture 13

Word Embeddings, Image Generation, Ethical

AI

NYU Tandon School of Engineering, Akbar Rafiey
Slides by Prof. Christopher Musco

1

Semantic embeddings

Goal: Learn mapping from numerical inputs into vectors such that

similar inputs map to similar vectors (e.g., with high inner

product).

Example

2

Word embeddings

Example: ⟨yi , yj⟩ is larger if wordi and wordj appear in more documents

together (high value in word-word co-occurrence matrix, XTX).

Similarity of word embeddings mirrors similarity of word context.

3

Word embeddings

General word embedding recipe:

1. Choose similarity metric k(wordi ,wordj) which can be

computed for any pair of words.

2. Construct similarity matrix M ∈ Rn×n with

Mi ,j = k(wordi ,wordj).

3. Find low rank approximation M ≈ YTY where Y ∈ Rk×n.

4. Columns of Y are word embedding vectors.

We expect that ⟨yi , yj⟩ will be larger for more similar words.

4

Word embeddings

How do current state-of-the-art methods differ from LSA?

• Similarity based on co-occurrence in smaller chunks of words. E.g.

in sentences or in any consecutive sequences of 3, 4, or 10 words.

• Usually transformed in non-linear way. E.g.

k(wordi ,wordj) =
p(i,j)

p(i)p(j) where p(i , j) is the frequency both i , j

appeared together, and p(i), p(j) is the frequency either one

appeared.

5

Modern word embeddings

Computing word similarities for “window size” 4:

6

Modern word embeddings

Current state of the art models: GloVE, word2vec.

• word2vec was originally presented as a shallow neural network

model, but it is equivalent to matrix factorization method

(Levy, Goldberg 2014).

• For word2vec, similarity metric is the “point-wise mutual

information”: log p(i ,j)
p(i)p(j) .

7

Caveat about factorization

SVD will not return a symmetric factorization in general. In fact, if

M is not positive semidefinite1 then the optimal low-rank

approximation does not have this form.

1I.e., k(wordi ,wordj) is not a positive semidefinite kernel.

8

Caveat about factorization

• For each word i we get a left and right embedding vector wi

and yi . It’s reasonable to just use one or the other.

• If ⟨yi , yj⟩ is large and positive, we expect that yi and yj have

similar similarity scores with other words, so they typically are

still related words.

• Another option is to use as your features for a word the

concatenation [wi , yi]

9

Easiest way to use word embeddings

Lots of pre-trained word vectors are available online:

• Original gloVe website:

https://nlp.stanford.edu/projects/glove/.

• Compilation of many sources:

https://github.com/3Top/word2vec-api

10

https://nlp.stanford.edu/projects/glove/
https://github.com/3Top/word2vec-api

Word embeddings math

Lots of cool demos for what can be done with these embeddings.

E.g. “vector math” to solve analogies.

11

Forward looking application: unsupervised translation

• Train word-embeddings for languages separately. Obtain lowish

dimensional point clouds of words.

• Perform rotation/alignment to match up these point clouds.

• Equivalent words should land on top of each other.

No needs for labeled training data like translated pairs of sentences!

12

Forward looking application: unsupervised translation

Why not monkey or whale language?

Earth Species Project (www.earthspecies.org), CETI Project

(www.projectceti.org)

13

www.earthspecies.org
www.projectceti.org

Semantic embeddings

The same approach used for word embeddings can be used to

obtain meaningful numerical features for any other data where

there is a natural notion of similarity.

For example, the items could be nodes in a social network graph.

Maybe be want to predict an individuals age, level of interest in a

particular topic, political leaning, etc.

14

Node embeddings

Generate random walks (e.g. “sentences” of nodes) and measure

similarity by node co-occurence frequency.

15

Node embeddings

Again typically normalized and apply a non-linearity (e.g. log) as in

word embeddings.

Popular implementations: DeepWalk, Node2Vec. Again initially

derived as simple neural network models, but are equivalent to

matrix-factorization (Qiu et al. 2018).

16

Bimodal embeddings

We can also create embeddings that represent different types of

data. OpenAI’s CLIP architecture:

Goal: Train embedding architectures so that ⟨Ti , Ij⟩ are similar if

image and sentence are similar.

17

Contrastive Language–Image Pre-training (CLIP)

What do we use as ground truth similarities during training?

Sample a batch of sentence/image pairs2 and just use identity

matrix.

This is called contrastive learning. Train unmatched text/image

pairs to have nearly orthogonal embedding vectors.

2CLIP was trained on 400 million text-image pairs scraped from the internet.

18

CLIP for zero-shot learning

2021 result: 76% accuracy on ImageNet image classification

challenge with no labeled training data.

19

Image Synthesis

19

Autoencoders learn compressed representations

f (x) = d(e(x)) projects an image x closer to the space of natural

images.

20

Autoencoders for data generation

Suppose we want to generate a random natural image. How might

we do that?

• Option 1: Draw each pixel value in x uniformly at random.

Draws a random image from A.

• Option 2: Draw x randomly from S, the space of images

representable by the autoencoder.

How do we randomly select an image from S?

21

Autoencoders for data generation

Autoencoder approach to generative ML: Feed random inputs

into decode to produce random realistic outputs.

Main issue: most random inputs words will “miss” and produce

garbage results.

22

Autoencoders for data generation

Variational Auto-Encoders (VAEs) attempt to resolve this issue.

23

Variational AutoEncoders (VAEs)

VAEs attempt to resolve this issue. Basic ideas:

• Instead of mapping inputs to a single latent vector, VAEs map

them to a probability distribution in the latent space (e.g., a

Gaussian distribution)

• Add noise during training.

• Add penalty term so that distribution of code vectors

generated looks like mean 0, variance 1 Gaussian.

24

Generative Adversarial Networks (GANs)

VAEs give very good results, but tends to produce images with

immediately recognizable flaws (e.g. soft edges, high-frequency

artifacts).

25

Generative Adversarial Networks (GANs)

Lots of efforts to hand-design regularizers that penalize images

that don’t look realisitic to the human eye.

Main idea behind GANs: Use machine learning to automatically

encourage realistic looking images.

min
θ

L(θ) + P(θ)

26

Generative Adversarial Networks (GANs)

Let x1, . . . , xn be real images and let z1, . . . , zm be random code vectors.

The goal of the discriminator is to output a number between [0, 1] which

is close to 0 if the image is fake, close to 1 if it’s real.

Train weights of discriminator Dθ to minimize:

min
θ

n∑
i=1

− log (Dθ(xi)) +
m∑
i=1

− log (1− Dθ(Gθ′(zi))
27

Generative Adversarial Networks (GANs)

Goal of the generator Gθ′ is the opposite. We want to maximize:

max
θ′

m∑
i=1

− log (1− Dθ(Gθ′(zi))

This is called an “adversarial loss function”. D is playing the role of the

adversary.
28

Generative Adversarial Networks (GANs)

θ∗,θ′∗ solve min
θ

max
θ′

n∑
i=1

− log (Dθ(xi)) +
m∑
i=1

− log (1− Dθ(Gθ′(zi))

This is called a minimax optimization problem. Really tricky to

solve in practice.

• Repeatedly play: Fix one of θ∗ or θ′∗, train the other to

convergence, repeat.

• Simultaneous gradient descent: Run a single gradient

descent step for each of θ∗,θ′∗ and update D and G

accordingly. Difficult to balance learning rates.

• Lots of tricks (e.g. slight different loss functions) can help.

29

Generative Adversarial Networks (GANs)

State of the art until a few years ago.

30

Diffusion

Auto-encoder/GAN approach: Input noise, map directly to

image.

Diffusion: Slowly move from noise to image.

31

How diffusion models work

• Forward Process:
• Gradually add noise to data until it becomes pure noise.

• Reverse Process:
• Train a neural network to remove the noise step by step.

Key Question: How do we predict and reverse noise effectively?
32

Mathematical Formulation (1/2)

Forward Process (Adding Noise):

q(xt |xt−1) = N (xt ;
√
1− βtxt−1, βtI)

• βt : Noise schedule.

• After T steps, for large enough T , xT is pure noise.

Cumulative Noise:

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I)

with retention factor αt =
∏t

s=1(1− βs).

33

Mathematical formulation (2/2)

Reverse Process (Denoising):

pθ(xt−1|xt) = N (xt−1;µθ(xt , t),Σθ(xt , t))

• µθ: Predicted mean of the clean image.

• Σθ: Predicted variance (optional).

Training objective:

Lsimple = Ex0,t,ϵ

[
∥ϵ− ϵθ(xt , t)∥2

]
34

Training process

Data Preparation:

• Use large datasets of images x0.

Noise Addition:

xt =
√
αtx0 +

√
1− αtϵ

Model Training:

• Train ϵθ(xt , t) to predict the noise.

Loss Function:

Lsimple = Ex0,t,ϵ

[
∥ϵ− ϵθ(xt , t)∥2

]
35

Image generation using diffusion

Sampling Process:

1. Start with pure noise xT .

2. Iteratively denoise using:

xt−1 = µθ(xt , t) +
√
Σθz , z ∼ N (0, I)

3. Final output: a clean image x0.

36

Semantic embeddings + diffusion

Text to image synthesis: Dall-E, Imagen, Stable Diffusion

“A chair that looks like a pineapple” 37

Diffusion

A demo for generating digits by training on MNIST.

38

Challenges

Some challenges:

• Slow inference (many denoising steps).

• Computationally expensive training. Can we store the entire

dataset on a single server?

• Ethical and responsible AI practices.

• Individual privacy

• Bias

• Fairness

39

Generative models and data leakage

Generative models can potentially memorise and regenerate their

training data points.

40

Generative models and data leakage

Generative models can potentially memorise and regenerate their

training data points.

41

Data leakage

As we saw in the text generation lab, machine learning algorithms

are prone to leak information about their training data:

Here, our generative model revealed entire sentences from the

training input. This is a quality issue, but can also be a privacy

issue.

42

Data leakage

Many modern ML systems trained on user data.

• Smart Compose in Gmail (trained on user emails).

• Generative AI for medical record taking (trained on patient

health data).

• Github Copilot trained on public and private repositories.

Even if models do not directly generate private data, it can

sometimes be extracted from them.

43

Data leakage

Training data extraction attacks can reconstruct verbatim training

examples e.g., they can extract secrets such as verbatim social

security numbers or passwords.

44

The privacy challenge

How do we balance privacy concerns with the desire to train

models on as much data as possible?

45

Formalizing privacy

There have been many many attempts to formalize what it means

for a machine learning algorithm or system to be private.

Differential Privacy has become the gold standard definition.

Clear theoretical founding, widely used in implemented systems

(TensorFlow, US Census statistics, Apple User data, etc.)

46

Differential privacy

Definition based on notation of neighboring datasets.

Definition: A dataset X = [x1, . . . , xn] is neighbors of a dataset

X′ = [x′1, . . . , x
′
n] if:

xi = x′i for all but one value of i ∈ {1, . . . n}.

I.e., xj ̸= x′j for a single index j .

Alternative but closely related definition: X and X′ are

neighbors if X′ can be obtained by adding or removing a single

data point from X.

47

Differential privacy

Definition

An algorithm A satisfies ϵ-differential privacy if, for any two

neighboring datasets X, X′, and any possible output of the

algorithm z,

Pr[A(X) = z] ≤ eϵ Pr[A(X′) = z].

In the context of machine learning, A could be the training

procedure and z could be, e.g., the model weights.

In the context of databases/statistical applications, A might

implement a simple statistic function like the mean:

1

n

n∑
i=1

xi .

48

Differential privacy

Definition

An algorithm A satisfies ϵ-differential privacy if, for any two

neighboring datasets X, X′, and any possible output of the

algorithm z, Pr[A(X) = z] ≤ eϵ Pr[A(X′) = z].

Think of ϵ as a reasonably small constant. E.g. ϵ ∈ (0, 5]. For

small ϵ, eϵ ≈ (1 + ϵ).

49

Differential privacy

Definition

An algorithm A satisfies ϵ-differential privacy if, for any two

neighboring datasets X, X′, and any possible output of the

algorithm z, Pr[A(X) = z] ≤ eϵ Pr[A(X′) = z].

In words, differential privacy says that including an individuals data

in a dataset X can only increase or decrease the probability of

observing any particular output by a small factor.

Inherently a property of randomized algorithms. Obtaining

differentially private machine learning methods will require adding

randomness to the training process.

50

Differential privacy properties

Postprocessing property: If an algorithm A(X) is ϵ-DP, then

B(A(X)) is ϵ-DP for any (possibly non-private) algorithm B.

Composition property: If an algorithm A1 is ϵ1-DP and A2 is

ϵ2-DP, then B(A1(X),A2(X)) is (ϵ1 + ϵ2)-DP.

51

Differential privacy

There are many ways to add randomness. Perhaps the most

common is noise injection.

Simple example: Suppose X contains scalar values

x1, . . . , xn ∈ {0, 1}. Suppose we want to compute the average,

Q(X) = 1
n

∑n
i=1 xi .

Naively, adding or removing a point from the dataset changes the

average by ± 1
n with probability 1, so, naively, a mean computation

is not differentially private.

52

Noise injection

Differentially Private Estimate of Q(X) = 1
n

∑n
i=1 xi :

• Generate an appropriate random number η.

• Return Q(X) + η.

Example = X = {0, 1, 1, 0, 0, 0},X′ = {0, 1, 1, 0, 1, 0}.

Trade-off between privacy and accuracy.

53

What type of noise and how much?

Theorem (Laplace Mechanism)

For a function Q with sensitivity ∆Q ,

A(X) = Q(X) + Lap(∆Q/ϵ)

is ϵ-differentially private.

Sensitiviy ∆Q = maxneighboring X,X′ |Q(X)− Q(X′)|.

What is ∆Q for Q(X) = 1
n

∑n
i=1 xi?

Lap(b) is a Laplacian random variable with parameter b (which

means variance 2b2). PDF is:

pb(η) =
1

2b
e−|η|/b

54

Laplace mechanism analysis

Theorem (Laplace Mechanism)

For a function Q with sensitivity ∆Q ,

A(X) = Q(X) + Lap(∆Q/ϵ) is ϵ-differentially private.

Proof: For any possible output z ,

• Pr[A(X) = z] = 1
2(∆Q/ϵ)

e−|Q(X)−z|/(∆Q/ϵ)

• Pr[A(X′) = z] = 1
2(∆Q/ϵ)

e−|Q(X′)−z|/(∆Q/ϵ)

Pr[A(X) = z]

Pr[A(X′) = z]
= e−(|Q(X)−z|−|Q(X′)−z|)/(∆Q/ϵ)

≤ e
|Q(X)−Q(X′)|

∆Q/ϵ ≤ eϵ.

55

What do we pay in terms of accuracy?

Lap(b) has standard deviation
√
2b. Like Gaussian distribution,

Laplace random variables usually fall within a few standard

deviations of the mean:

56

What do we pay in terms of accuracy?

Lap(b) has standard deviation
√
2b. Like Gaussian distribution,

Laplace random variables usually fall within a few standard

deviations of the mean:

57

What do we pay in terms of accuracy?

Standard deviation =
√
2 · ∆Q

ϵ .

For x1, . . . , xn ∈ [0, 1], Q(X) = 1
n

∑n
i=1 xi , we have that:

∆Q =
1

n
.

Overall error from adding noise:

O

(
1

ϵn

)
Very reasonable if n is large!

E.g., if n = 10, 000 can get error roughly .001 on mean estimate

with privacy parameter ϵ = .1.

58

What about more complex functions?

In machine learning applications, Q is an entire training procedure,

and the output is vector of parameters.

Q(X, y) → β ∈ Rd .

Challenges:

• Very hard to estimate the sensitivity to figure out how much

noise should be added.

• If some parameters are more sensitive to noise, we could

change the models output drastically.

59

Differentially private (stochastic) gradient descent

Main idea: Typically Q(X, y) is computed by running gradient

descent on a loss function L(β). Instead of directly adding noise to

Q(X, y), add noise at each step of gradient descent.

Basic Gradient descent algorithm:

• Choose starting point β(0).

• For i = 0, . . . ,T :

• β(i+1) = β(i) − η∇L(β(i))

• Return β(T).

60

Differentially private (stochastic) gradient descent

Typical loss function in machine learning have finite sum structure.

L(β) =
n∑

j=1

ℓ(β, xj , yj)

By linearity:

∇L(β) =
n∑

j=1

∇ℓ(β, xj , yj)

Looks just like our mean estimation problem! Can bound the

contribution of each data example (xj , yj) to the gradient to get a

sensitivity, then add noise.

61

Differentially private (stochastic) gradient descent

Due to a 2016 paper by Mart́ın Abadi, Andy Chu, Ian Goodfellow,

H. Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang.

DP-SGD:

• Choose starting point β(0).

• For i = 0, . . . ,T :

• β(i+1) = β(i) − η(∇L(β(i)) + ri)

• Return β(T).

Above each ri is a random Gaussian vector.

Leading way to incorperate privacy into training machine

learning models. Implented natively, e.g., in TensorFlow.

62

Federated (Decentralized) Learning

Some challenges with centralized settings

• Privacy concern: in many applications individuals do not trust

the central server. Individuals want to keep their raw data

local

• Computational concern: collecting all the data at one central

server and doing computation could be infeasible.

63

Federated Learning

Federated Learning: A decentralized learning paradigm where

data remains local while models are trained collaboratively.

64

Federated Learning

• Typical loss function in machine learning:

L(β) =
n∑

j=1

ℓ(β, xj , yj)

where X = {x1, ..., xn} are the training data point.

• In the FL setting each client has its own local data points and

its own local loss function.

• The loss can be broken down to sum of the clients’ local

losses.

L(β) =
∑
j∈P1

ℓ1(β, xj , yj) +
∑
j∈P2

ℓ2(β, xj , yj) + ...+
∑
j∈PK

ℓK (β, xj , yj)

65

Federated Learning

We assume there are K clients over which the data is partitioned,

with Pk the set of indexes of data points on client k, with

nk = |Pk |.
Objective

min
β

F (β) =
K∑

k=1

nk
n
fk(β)

where fk(β) =
1
nk

∑
j∈Pk

Lk(β, xj , yj) is a user-specified loss

function on client k local training dataset.

66

Federated SGD

Algorithmic framework:

• Communication rounds between the server and clients

• At each communication round the server broadcast the

current global model to clients

• Clients, in parallel, do local SGD step

• Clients send their updates to the central server

• The server aggregates the updates and updates the global

model.

67

FedSGD

Basic FedSGD algorithm:

Server chooses a starting model β(0).

For i = 0, . . . ,T :

• Server broadcast the current model β(i) to clients

• Clients in parallel do:

Compute ∇Lk(β
(i)) = 1

nk

∑
j∈Pk

∇ℓk(β
(i), xj , yj)

Local GD update β
(i+1)
k = β(i) − η∇Lk(β

(i))

Send β
(i+1)
k to server

• Server updates β(i+1) =
∑K

k=1
nk
n β

(i+1)
k

Return β(T).

68

Advantages and challenges of FL

Advantages:

• Preserves data privacy by keeping data local.

• Enables collaborative training across multiple organizations or

devices.

• Reduces risks of centralized data breaches.

• Facilitates training on diverse, real-world data without data

sharing.

Challenges:

• Communication overhead between clients and server.

• Handling heterogeneous (non-iid) data distributions.

• Ensuring fairness across participants with varying data quality

or quantity.

• Potentially high computational demands on client sides.
69

