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Semantic embeddings

Goal: Learn mapping from numerical inputs into vectors such that
similar inputs map to similar vectors (e.g., with high inner
product).
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Word embeddings

Example: (y;,y;) is larger if word; and word; appear in more documents
together (high value in word-word co-occurrence matrix, X7 X).
Similarity of word embeddings mirrors similarity of word context.
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Word embeddings

General word embedding recipe:
1. Choose similarity metric k(word;, word;) which can be
computed for any pair of words.
2. Construct similarity matrix M € R™" with
M; ; = k(word;, word;).
3. Find low rank approximation M ~ Y TY where Y € Rk*".

4. Columns of Y are word embedding vectors.

We expect that (y;,y;) will be larger for more similar words.



Word embeddings
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How do current state-of-the-art methods differ from LSA?

e Similarity based on co-occurrence in smaller chunks of words. E.g.
in sentences or in any consecutive sequences of 3, 4, or 10 words.
e Usually transformed in non-linear way. E.g.
k(word;, word;) = p’(’,.()’g()j) where p(i, ;) is the frequency both i,

appeared together, and p(i), p(j) is the frequency either one
appeared.




Modern word embeddings

Computing word similarities for “window size” 4:
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Modern word embeddings

Current state of the art models: G1oVE, word2vec.

e word2vec was originally presented as a shallow neural network
model, but it is equivalent to matrix factorization method
(Levy, Goldberg 2014).

e For word2vec, similarity metric is the “point-wise mutual

information”: log p?i()i:.()j)'




Caveat about factorization
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SVD will not return a symmetric factorization in general. In fact, if
M is not positive semidefinite! then the optimal low-rank

approximation does not have this form.

!l.e., k(word;, word}) is not a positive semidefinite kernel.



Caveat about factorization
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e For each word i we get a left and right embedding vector w;
and y;. It's reasonable to just use one or the other.

o If (yj,y;) is large and positive, we expect that y; and y; have
similar similarity scores with other words, so they typically are
still related words.

e Another option is to use as your features for a word the

concatenation [w;, y]



Easiest way to use word embeddings

Lots of pre-trained word vectors are available online:

e Original gloVe website:
https://nlp.stanford.edu/projects/glove/.

e Compilation of many sources:
https://github.com/3Top/word2vec-api
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Word embeddings math

Lots of cool demos for what can be done with these embeddings.
E.g. “vector math” to solve analogies.

Vector Math
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Forward looking application: unsupervised translation

e Train word-embeddings for languages separately. Obtain lowish
dimensional point clouds of words.

e Perform rotation/alignment to match up these point clouds.

e Equivalent words should land on top of each other.

No needs for labeled training data like translated pairs of sentences!
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Forward looking application: unsupervised translation

Why not monkey or whale language?

Earth Species Project (www.earthspecies.org), CETI Project
(www.projectceti.org)
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Semantic embeddings

The same approach used for word embeddings can be used to
obtain meaningful numerical features for any other data where
there is a natural notion of similarity.

item1 item2 itemn

similarity matrix

M

L
=

Tway  Lway

way

For example, the items could be nodes in a social network graph.
Maybe be want to predict an individuals age, level of interest in a
particular topic, political leaning, etc.
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Node embeddings
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Generate random walks (e.g. “sentences” of nodes) and measure
similarity by node co-occurence frequency.
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Node embeddings

Again typically normalized and apply a non-linearity (e.g. log) as in
word embeddings.

node1 node2 .. node 8
1,3,4,45,2,1,2,5 U !
6,8,6,43,1,5,3, 4 il , |, .
7,8,6,8,7,8,6,8,6 o
4,6,8,6,4,3,1,2,5 3

@ 1 0 0

Popular implementations: DeepWalk, Node2Vec. Again initially
derived as simple neural network models, but are equivalent to
matrix-factorization (Qiu et al. 2018).
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Bimodal embeddings

We can also create embeddings that represent different types of

data. OpenAl's CLIP architecture:
My new puppy!
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Goal: Train embedding architectures so that (T;,1;) are similar if

image and sentence are similar.
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Contrastive Language—Image Pre-training

What do we use as ground truth similarities during training?
Sample a batch of sentence/image pairs? and just use identity

i o

matrix.

My new puppy! 0 0
Best dim sum ever. 0 1 0
NYC in the rain. 0 0 1

This is called contrastive learning. Train unmatched text/image

pairs to have nearly orthogonal embedding vectors.

2CLIP was trained on 400 million text-image pairs scraped from the internet.
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CLIP for zero-shot learning

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford "' Jong Wook Kim ‘! Chris Hallacy ! Aditya Ramesh' Gabriel Goh' Sandhini Agarwal‘
Girish Sastry' Amanda Askell! Pamela Mishkin' Jack Clark' Gretchen Krueger' Ilya
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Image Synthesis



Autoencoders learn compressed representations

Space of “natural”
images 7

f(x) = d(e(x)) projects an image x closer to the space of natural
images.
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Autoencoders for data generation

Suppose we want to generate a random natural image. How might
we do that?

e Option 1: Draw each pixel value in x uniformly at random.
Draws a random image from A.

e Option 2: Draw x randomly from S, the space of images
representable by the autoencoder.

m

How do we randomly select an image from &7
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Autoencoders for data generation

Autoencoder approach to generative ML: Feed random inputs

into decode to produce random realistic outputs.

n, ==z

Ny == 2 )

\

Main issue: most random inputs words will “miss” and produce

garbage results.
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Autoencoders for data generation

Space of “natural”
images 7

Variational Auto-Encoders (VAEs) attempt to resolve this issue.
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Variational AutoEncoders (VAEs)

VAEs attempt to resolve this issue. Basic ideas:

e Instead of mapping inputs to a single latent vector, VAEs map
them to a probability distribution in the latent space (e.g., a
Gaussian distribution)

e Add noise during training.

e Add penalty term so that distribution of code vectors
generated looks like mean 0, variance 1 Gaussian.

Input Output

Encoder Decoder 24



Generative Adversarial Networks (GANs)

VAEs give very good results, but tends to produce images with
immediately recognizable flaws (e.g. soft edges, high-frequency
artifacts).

Ny o= (z )
n, == (2
Ny == 2 )
£

y
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Generative Adversarial Networks (GANs)

Lots of efforts to hand-design regularizers that penalize images

that don’t look realisitic to the human eye.

Main idea behind GANs: Use machine learning to automatically
encourage realistic looking images.

mein L(0) + P(0)
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Generative Adversarial Networks (GANs)

real-world

image generator

code vector

Let x1,...,X, be real images and let z;, ..., 2z, be random code vectors.
The goal of the discriminator is to output a number between [0, 1] which

is close to 0 if the image is fake, close to 1 if it's real.

Train weights of discriminator Dy to minimize:

mlnz log (Do (x —|—Z log (1 — De(Ger(2i))

i=1
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Generative Adversarial Networks (GANs)

real-world

image generator

code vector

Goal of the generator Gy is the opposite. We want to maximize:
m
n}gx‘zl —log (1 — Dg(Ge(z;))
=

This is called an “adversarial loss function”. D is playing the role of the

adversary.
28



Generative Adversarial Networks (GANs)

n

6,6 solve mj —log (Do(x:) + 3. — log (1 — Do(Gy (2
solve memmea}xg og (Dg(x;)) ; og ( o(Ge(2/))

This is called a minimax optimization problem. Really tricky to

solve in practice.

o Repeatedly play: Fix one of 8* or 8%, train the other to

convergence, repeat.

e Simultaneous gradient descent: Run a single gradient
descent step for each of 8*,0™ and update D and G
accordingly. Difficult to balance learning rates.

e Lots of tricks (e.g. slight different loss functions) can help.
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Generative Adversarial Networks (GANs)

State of the art until a few years ago.
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Diffusion

Auto-encoder/GAN approach: Input noise, map directly to

image.

Diffusion: Slowly move from noise to image.

Denoising Diffusion Probabilistic Models

Jonathan Ho Ajay Jain Pieter Abbeel
UC Berkeley UC Berkeley UC Berkeley
jonathanho@berkeley.edu ajayj@berkeley.edu pabbeel@cs.berkeley.edu

Abstract

‘We present high quality image synthesis results using diffusion probabilistic models,
a class of latent variable models inspired by considerations from nonequilibrium
thermodynamics. Our best results are obtained by training on a weighted variational
bound designed according to a novel connection between diffusion probabilistic

31



How diffusion models work

e Forward Process:

e Gradually add noise to data until it becomes pure noise.
e Reverse Process:

e Train a neural network to remove the noise step by step.

Forward Diffusion Process

1
2

P

Denoising UNet

Reverse Diffusion Process

Key Question: How do we predict and reverse noise effectively? -



Mathematical Formulation (1/2)

Forward Process (Adding Noise):
q(x¢[xt—1) = N(X¢; /1 = Bexe—1, Bil)

a(xe[x¢-1)
O @™ @ g

e ;. Noise schedule.

e After T steps, for large enough T, x7 is pure noise.
Cumulative Noise:
Xt = arxo + V1 — are, e~ N(0,1)

with retention factor oy = [[i_;(1 — Bs).
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Mathematical formulation (2/2)

Reverse Process (Denoising):

p@(Xt_l‘Xt) - N(Xf—l; :ue(xi‘? t)v ZQ(XU t))

Zloxrl\x:)
@H ~@ - 8g H

(Xf\xr 1)

e (i9: Predicted mean of the clean image.

e >, Predicted variance (optional).

Training objective:
ﬁsimple = IExo,t,e [He (xt7 )H }
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Training process

Data Preparation:
e Use large datasets of images xg.

Noise Addition:

Xt = \/Q¢Xg + V 1-— Q€
Model Training:
e Train €y(x¢, t) to predict the noise.

Loss Function:

Esimple = IExo,t,e “|6 - 69(Xt7 t)“ﬂ
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Image generation using diffusion

Sampling Process:

1. Start with pure noise x7.

2. lteratively denoise using:

xe—1 = pg(xe, t) + 1/ 2oz, z~N(0,1)

3. Final output: a clean image xo.
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Semantic embeddings + diffusion

Text to image synthesis: Dall-E, Imagen, Stable Diffusion

“A chair that looks like a pineapple” 37



A demo for generating digits by training on MNIST.
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Challenges

Some challenges:

e Slow inference (many denoising steps).
e Computationally expensive training. Can we store the entire
dataset on a single server?

e Ethical and responsible Al practices.

e Individual privacy
e Bias
e Fairness

39



Generative models and data leakage

Generative models can potentially memorise and regenerate their
training data points.

Extracting Training Data from Diffusion Models
Nicholas Carlini*'  Jamie Hayes*>  Milad Nasr*!
Matthew Jagielskit'  Vikash Sehwag**  Florian Tramer3
Borja Balle'?  Daphne Ippolito™"  Eric Wallace'
1Google 2DeepMind 3ETHZ “Princeton SUC Berkeley
*Equal contribution *Equal contribution "Equal contribution
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Generative models and data leakage

Generative models can potentially memorise and regenerate their
training data points.

Training Set Generated Image

Caption: Living in the light Prompt:
with Ann Graham Lotz Ann Graham Lotz

Figure 1: Diffusion models memorize individual train-
ing examples and generate them at test time. Left: an
image from Stable Diffusion’s training set (licensed CC
BY-SA 3.0, see [49]). Right: a Stable Diffusion gen-
eration when prompted with “Ann Graham Lotz”. The
reconstruction is nearly identical (¢, distance = 0.031).
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Data leakage

As we saw in the text generation lab, machine learning algorithms
are prone to leak information about their training data:

arm towards the viewer. Gregor then turned to look out the window at

hear the visitor’s first words of greeting and he knew who
calm, “I'll get dressed straight away now, pack up my samples and set off. Will
again, “seven o’clock, and there’s still a fog like this.” And he lay there sighing,
harder than before, if that was possible, he felt that the lower part of his body a

Here, our generative model revealed entire sentences from the
training input. This is a quality issue, but can also be a privacy

issue.
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Data leakage

Many modern ML systems trained on user data.

e Smart Compose in Gmail (trained on user emails).

e Generative Al for medical record taking (trained on patient
health data).

e Github Copilot trained on public and private repositories.

Even if models do not directly generate private data, it can
sometimes be extracted from them.
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Data leakage

Training data extraction attacks can reconstruct verbatim training
examples e.g., they can extract secrets such as verbatim social
security numbers or passwords.

Extracting Training Data from Large Language Models

Nicholas Carlini' Florian Tramer? Eric Wallace? Matthew Jagielski*
Ariel Herbert-Voss™®  Katherine Lee! Adam Roberts' ~ Tom Brown’
Dawn Song? Ulfar Erlingsson’ Alina Oprea* Colin Raffel!

"Google *Stanford 3UC Berkeley *Northeastern University SOpenAl ®Harvard "Apple

Prefix
East Stroudsburg Stroudsburg

Abstract

1t has become common to publish large (billion parameter)
language models that have been trained on private datasets.
This paper demonstrates that in such settings, an adversary can
perform a training data extraction attack to recover individual
training examples by querying the language model.

We demonstrate our attack on GPT-2, a language model
trained on scrapes of the public Intenet, and are able to extract
hundreds of verbatim text sequences from the model’s training
data. These extracted examples include (public) personally
identifiable information (names, phone numbers, and email
addresses), IRC conversations, code, and 128-bit UUIDs. Our
attack is possible even though each of the above sequences
are included in just one document in the training data.

We comprehensively evaluate our extraction attack to un-

Corporation Seabank Centre
Marine Parade Southport

derstand the factors that confribute (0 its success. Worryingly,
we find that larger models are more vulnerable than smaller
‘models. We conclude by drawing lessons and discussing pos-  Figure 1: Our extraction attack. Given query access o a
sible safeguards for training large language models. neural network language model, we extract an individual per-

son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
1 Introduction tion that is all accurate so we redact it to protect privacy.
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The privacy challenge

How do we balance privacy concerns with the desire to train
models on as much data as possible?
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Formalizing privacy

There have been many many attempts to formalize what it means
for a machine learning algorithm or system to be private.

Calibrating Noise to Sensitivity in Private Data
Analysis

Cynthia Dwork?, Frank MeSherry!, Kobbi Nissim?, and Adam Smith®*
! Microsoft Research, Silicon Valley. {dwork,mcsherry}@microsoft.com

? Ben-Gurion University. kobbi®cs.bgu.ac.il
# Weizmann Institute of Seience. adam.smith@ueizmann.ac.il

Differential Privacy has become the gold standard definition.

Clear theoretical founding, widely used in implemented systems
(TensorFlow, US Census statistics, Apple User data, etc.)
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Differential privacy

Definition based on notation of neighboring datasets.

Definition: A dataset X = [x1,...,X,] is neighbors of a dataset
X' =[xi,...,x}] if:

x; = X for all but one value of i € {1,...n}.

; . . .
le., x; # X; for a single index j.

Alternative but closely related definition: X and X' are
neighbors if X’ can be obtained by adding or removing a single
data point from X.

47



Differential privacy

Definition
An algorithm A satisfies e-differential privacy if, for any two
neighboring datasets X, X’, and any possible output of the

algorithm z,

PrlA(X) = z] < e PrlA(X') = z].

In the context of machine learning, A could be the training
procedure and z could be, e.g., the model weights.

In the context of databases/statistical applications, .A might
implement a simple statistic function like the mean:

n
1
— E 5%
n<

i=1
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Differential privacy

Definition

An algorithm A satisfies e-differential privacy if, for any two
neighboring datasets X, X’, and any possible output of the
algorithm z, Pr[A(X) = z] < e Pr[A(X') = z].

Think of € as a reasonably small constant. E.g. € € (0,5]. For

small ¢, e€ ~ (1 +¢).




Differential privacy

Definition

An algorithm A satisfies e-differential privacy if, for any two
neighboring datasets X, X’, and any possible output of the
algorithm z, Pr[A(X) = z] < e Pr[A(X') = z].

In words, differential privacy says that including an individuals data
in a dataset X can only increase or decrease the probability of
observing any particular output by a small factor.

Inherently a property of randomized algorithms. Obtaining

differentially private machine learning methods will require adding

randomness to the training process.
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Differential privacy properties

Postprocessing property: If an algorithm A(X) is e-DP, then
B(A(X)) is e-DP for any (possibly non-private) algorithm 1.

Composition property: If an algorithm A7 is €;-DP and A, is
€>-DP, then B(.Al(X),.Az(X)) is (61 + 62)—DP.
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Differential privacy

There are many ways to add randomness. Perhaps the most
common is noise injection.

Simple example: Suppose X contains scalar values

X1,...,%, € {0,1}. Suppose we want to compute the average,
Q(X) = % Doy Xi.

Naively, adding or removing a point from the dataset changes the
average by i% with probability 1, so, naively, a mean computation

is not differentially private.
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Differentially Private Estimate of Q(X) = Y7  x;:

n

e Generate an appropriate random number 7.
e Return Q(X) + 7.

Example = X = {0,1,1,0,0,0}, X’ = {0,1,1,0,1,0}.

Trade-off between privacy and accuracy.
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What type of noise and how much?

Theorem (Laplace Mechanism)

For a function Q with sensitivity Aq,
A(X) = Q(X) + Lap(Aq/e)

is e-differentially private.

Sensitiviy AQ = MaXpeighboring X, X’ ‘Q(X) = Q(X,)‘
What is Ag for Q(X) = 137 | x?

n

Lap(b) is a Laplacian random variable with parameter b (which
means variance 2b%). PDF is:

1 —|n
po(n) = e VI/®
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Laplace mechanism analysis

Theorem (Laplace Mechanism)
For a function Q with sensitivity A,
A(X) = Q(X) + Lap(Aq/e) is e-differentially private.

Proof: For any possible output z,

o PrlA(X) =2z] = 2(A2/6)e*|Q(X)*Z\/(AQ/6)
o PrlAX")=2] = 2(A10/€)e*\Q(X')*Z\/(AQ/E)

PrAX) =2] _ _—(ex)-z1-1e(x)~z)/(20/e)
PrlA(X’) = ]
1e(X)— (x|
<e Ralt < et
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What do we pay in terms of accuracy?

Lap(b) has standard deviation v/2b. Like Gaussian distribution,
Laplace random variables usually fall within a few standard
deviations of the mean:

99.7%

95%

68%
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What do we pay in terms of accuracy?

Lap(b) has standard deviation v/2b. Like Gaussian distribution,
Laplace random variables usually fall within a few standard
deviations of the mean:

©
o

Np
=}

Density
0.3
1

0.2

0.1
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What do we pay in terms of accuracy?

Standard deviation = /2 - 22
For x1,...,xp € [0,1], @(X) =2 37, x;, we have that:

Overall error from adding noise:

1
° ()
en
Very reasonable if n is large!

E.g., if n=10,000 can get error roughly .001 on mean estimate
with privacy parameter ¢ = .1.
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What about more complex functions?

In machine learning applications, @ is an entire training procedure,
and the output is vector of parameters.

Q(X,y) = B € R%.
Challenges:

e Very hard to estimate the sensitivity to figure out how much
noise should be added.

e |f some parameters are more sensitive to noise, we could
change the models output drastically.
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Differentially private (stochastic) gradient descent

Main idea: Typically Q(X,y) is computed by running gradient
descent on a loss function L(3). Instead of directly adding noise to
Q(X,y), add noise at each step of gradient descent.

Basic Gradient descent algorithm:

e Choose starting point B(O).
e Fori=0,...,T:

o B0 = g0 —yvL(?)
e Return ,G(T).
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Differentially private (stochastic) gradient descent

Typical loss function in machine learning have finite sum structure.

L(B) =D UB.x}, )
j=1

By linearity:

VL(B) =Y VUB,x;,))

=

Looks just like our mean estimation problem! Can bound the
contribution of each data example (x;, y;) to the gradient to get a

sensitivity, then add noise.
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Differentially private (stochastic) gradient descent

Due to a 2016 paper by Martin Abadi, Andy Chu, lan Goodfellow,
H. Brendan McMahan, llya Mironov, Kunal Talwar, Li Zhang.

DP-SGD:

e Choose starting point ﬁ(o).
e Fori=0,...,T:

o g =0 — (VL") +r)
e Return ,@(T).

Above each r; is a random Gaussian vector.

Leading way to incorperate privacy into training machine
learning models. Implented natively, e.g., in TensorFlow.
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Federated (Decentralized) Learning

Some challenges with centralized settings

e Privacy concern: in many applications individuals do not trust
the central server. Individuals want to keep their raw data
local

e Computational concern: collecting all the data at one central
server and doing computation could be infeasible.

63



Federated Learning

Federated Learning: A decentralized learning paradigm where
data remains local while models are trained collaboratively.

Communication-Efficient Learning of Deep Networks
from Decentralized Data

H. Brendan McMahan Eider Moore Daniel Ramage Seth Hampson Blaise Agiiera y Arcas
Google, Inc., 651 N 34th St., Seattle, WA 98103 USA
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Federated Learning

e Typical loss function in machine learning:
n

L(B) =D _U(B.x}, )
j=1

where X = {x1, ...,X,} are the training data point.

e In the FL setting each client has its own local data points and
its own local loss function.

e The loss can be broken down to sum of the clients’ local
losses.

LB) =Y a(B:xpy)+ Y (B y) + -+ Y k(B %), 5)

JEP1 JEP2 JEPK
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Federated Learning

We assume there are K clients over which the data is partitioned,
with Pj the set of indexes of data points on client k, with

e = |Pul.
Objective
n
: k
min F(8) = > = f(8)
k=1
where f(8) = nik jep, Lk(B,x;, yj) is a user-specified loss

function on client k local training dataset.
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Federated SGD

Algorithmic framework:

e Communication rounds between the server and clients

e At each communication round the server broadcast the
current global model to clients

e Clients, in parallel, do local SGD step
e Clients send their updates to the central server

e The server aggregates the updates and updates the global
model.
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FedSGD

Basic FedSGD algorithm:
Server chooses a starting model 3(©).
Fori=0,...,T

e Server broadcast the current model B(i) to clients
e Clients in parallel do:
Compute VL(8) = 2 5;cp, V(B %))
Local GD update BE{'H) =80 — T;VLk(ﬁ( ))
Send ,8 (1) 6 server

e Server updates BU 1) = Zk 1 "kﬁffﬂ)

Return B(T)
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Advantages and challenges of FL

Advantages:

e Preserves data privacy by keeping data local.

e Enables collaborative training across multiple organizations or
devices.

e Reduces risks of centralized data breaches.

e Facilitates training on diverse, real-world data without data
sharing.

Challenges:

e Communication overhead between clients and server.

Handling heterogeneous (non-iid) data distributions.

Ensuring fairness across participants with varying data quality
or quantity.
Potentially high computational demands on client sides.

69



