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Midterm Exam Sample Problems

Always, Sometimes, Never.

Indicate whether each of the following statements is ALWAYS true, SOMETIMES true, or NEVER true.
For full credit, provide a short justification or example to explain your choice.

(a) For random events p(x | y) < p(x, y).

ALWAYS SOMETIMES NEVER

(b) Consider a loss function L. If ∇L(β) = 0, then β is a minimizer of L.

ALWAYS SOMETIMES NEVER

(c) The empirical risk of a model is lower than the population risk.

ALWAYS SOMETIMES NEVER

(d) You use gradient descent to find parameters βGD for a multiple linear regression problem under ℓ2
loss: L(β) = ∥Xβ − y∥22. You are short on time, so you only run gradient descent for 10 iterations.
Your friend finds parameters βM using the equation βM = (XTX)−1XTy. Is L(βm) ≤ L(βGD)?

ALWAYS SOMETIMES NEVER

(e) Does βM achieve better population risk than βGD?

ALWAYS SOMETIMES NEVER

(f) Consider a binary classification problem with negative class 0 and positive class 1. Consider two
different linear classifiers that make predictions using the equation: (a) 1[⟨x,β⟩ > 0] or (b) 1[⟨x,β⟩ >
1], where β is a fixed parameter vector. Does classifier (a) have higher precision than classifier (b)?

ALWAYS SOMETIMES NEVER



Short Answer

Respond to each of the following questions using just a few words.
You are trying to develop a machine learning algorithm for classifying data x1, . . . ,xn ∈ Rd into categories

1, . . . , q. You have decided to use linear classification for the problem.

(a) You know you can find a good linear classifier for binary classification (dividing into q = 2 classes)
using logistic regression. You are considering using either the one-vs-all or one-vs-one approach to
adapting this approach to the multiclass problem. In a few sort sentences describe why you might use
one over the other.

(b) Your coworker suggests the following alternative approach: let’s try to learn a parameter vector β ∈ Rd

and classify using the following model:

fβ(x) =



1 if ⟨β,x⟩ ≤ 1

2 if 2 < ⟨β,x⟩ ≤ 3

3 if 3 < ⟨β,x⟩ ≤ 4
...

q − 1 if q − 2 < ⟨β,x⟩ ≤ q − 1

q if q − 1 < ⟨β,x⟩

Describe one potential issue and one potential benefit of your coworker’s method over the ap-
proaches mentioned in (a). There is no one ”right” answer here.

(c) For the two datasets D1 and D2 below, indicate which of the three approaches (one-vs-one, one-vs-all,
or your coworkers approach) would lead to an accurate solution to the multiclass classification problem.
No explanation is required, but having one might help you earn partial credit.



3. Polynomial transformation

We are given data with just one predictor variable and one target: (x1, y1), . . . , (xn, yn), with the goal of fit-
ting a degree two polynomial model using unregularized multiple linear regression with data transformation.
The goal is to find the best coefficients β0, β1, β2 for predicting y as β0 + β1x+ β2x

2.
Consider the following three transformed data matrices:

X1 =

1 x1 x2
1

...
...

...
1 xn x2

n

, X2 =

1 x2
1 − x1 x2

1
...

...
...

1 x2
n − xn x2

n

, and X3 =

1 2x2
1 − x1 2x1 − 4x2

1
...

...
...

1 2x2
n − xn 2xn − 4x2

n


Which of the above matrices can be used to solve this problem? In other words, if we train a multiple

linear regression problem with Xi can we obtain an optimal degree two polynomial fit for y1, . . . , yn. Justify
your answer in words, or with equations.

4. Transformed linear models

Write each of the following models as transformed linear models. That is, find a parameter vector β in terms
of the given parameters ai and data transformation ϕ(x) such that y = ⟨β, ϕ(x)⟩. Also, show how to recover
the original parameters ai from the parameters βj :

1. Example: y = a1x
2
1 + a2 log(a3x2). Solution: Notice that y = a1x

2
1 + a2 log(x2) + a2 log(a3). Let

ϕ([x1, x2]) = [x2
1, log(x2), 1]. Set a1 = β1, a2 = β2, a3 = eβ3/a2 .

2. y =

{
a1 + a2x if x < 1

a3 + a4x if x ≥ 1

3. y = (1 + a1x1)e
−x2+a2 .

4. y = (a1x1 + a2x2)e
−x1−x2 .

5. Estimating a range

Suppose you are given data x1, . . . , xn, where each xi is a single real value. Suppose that the data is
distributed independently and uniformly at random between −w and w for some real value w, Your goal
is to find the maximum likelihood estimate of w based on your data.

1. Write an expression for the likelihood function of the data {x1, . . . , xn} given the parameter w.

2. What is the Maximum Likelihood Estimate (MLE) for w based on {x1, . . . , xn}?
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