
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6923: Written Homework 1.
Due Wednesday, Feb. 19, 2025, 11:59pm.

Discussion with other students is allowed for this problem set, but solutions must be written-up individually.

For this first problem set, 10% extra credit will be given if solutions are typewritten (using LaTeX,
Markdown, or another mathematical formatting program). MSWord with Equation Editor does not count.

Problem 1: Minimizing a Weighted Loss Function (10pts)

Consider the standard multivariate linear model of the form:

fβ(x) = ⟨β,x⟩.

In class, we saw how to optimize this model under the sum-of-squares loss, which for a training data set
(x1, y1), . . . , (xn, yn) is equal to:

LSS(β) =

n∑
i=1

(⟨β,xi⟩ − yi)
2.

Sometimes, we are interested instead in using a weighted ℓ2 loss that weights different training points dif-
ferently. Specifically, suppose we are given a list of positive weights w1, . . . , wn > 0. We might want to
minimize the weighted sum-of-squares loss:

LWSS(β) =

n∑
i=1

wi · (⟨β,xi⟩ − yi)
2.

Weighted loss functions are often used when some of your data is considered “more reliable” (e.g., because
it was collected with a more accurate instrument). You might set the weights for the more reliable examples
higher than those of less reliable examples. Weighted loss functions will also be important when we discuss
a technique called “boosting” later in the semester.

(a) Derive an expression for the gradient of LWSS(β). Note that w1, . . . , wn are fixed constants given to us
in advance. They are not parameters of the model.

(b) Write down a closed form expression for β∗ = argminβ LWSS(β). I.e., for the parameters that minimize
the weighted loss. Your expression should include the given weights w1, . . . , wn in some way.

Problem 2: Machine Learning Does Averages (15pts)

Suppose we have data y1, . . . , yn ∈ R and we want to choose a single value m ∈ R which is “most repre-
sentative” of our dataset. This is sometimes called the “central tendency” problem in statistics. A machine
learning approach to this problem would measure how representative m is of the data using a loss function.
As you will see, different choices of loss function lead to different measures of central tendancy you have
probably seen in the past!

(a) Consider the loss function L(m) =
∑n

i=1(yi − m)2. Show that L(m) is minimized by setting m = ȳ,
where ȳ = 1

n

∑n
i=1 yi is the mean of our data.

(b) Consider the loss function L(m) = maxi |yi −m|. What value of m minimizes this loss? Hint: Using
derivatives will not help here – try just thinking about the minimization problem directly.

(c) Consider the loss function L(m) =
∑n

i=1 |yi − m|. Prove that L(m) is minimized by setting m to the
median of the data. Hint: This question is harder than the previous two and takes some creativity!
Again derivatives might not be helpful.



Problem 3: Piecewise Linear Regression via Feature Transformations (15pts)

Your goal is to fit a piecewise linear model to a single variate dataset of the form (x1, y1), . . . , (xn, yn) where
all values are scalars. We will only use two pieces. In other words, for some known value λ,

f(xi) =

{
a1 + s1xi for xi < λ

a2 + s2xi for xi ≥ λ

with the additional constraint that a1+s1λ = a2+s2λ. This constraint ensures that our two linear models
actually “meet” at x = λ, which means we get a continuous prediction function.

For example, when λ = 100, a piecewise linear fit for our MPG data might look like:

(a) Show that this model is equivalent to the following unconstrained model:

f(xi) =

{
a1 + s1xi for xi < λ

a1 + s1λ− s2λ+ s2xi for xi ≥ λ

(b) Show how to fit an optimal f under the squared loss using an algorithm for multiple linear regression.
In particular, your approach should:

• Transform the input data to form a data matrix X with multiple columns.

• Use a multiple regression algorithm to find the β which minimizes ∥y −Xβ∥22.
• Extract from the optimal β optimal values for a1, s1, s2.

You need to describe 1) a correct data transformation and 2) a correct mapping from β to a1, s1, s2. Note
that in our model λ is known. It is not a model parameter which needs to be optimized.

(c) Implement your algorithm in Python and apply it to the dataset from demo auto mpg.ipynb. Produce
a piecewise linear fit for MPG as a function of Horsepower using the value λ = 100. Plot the result. You
can attach a Jupyter notebook to your submission, or simply include the printed code and plot.

Problem 4: Thinking About Data Transformations (15pts)

Supposed you are trying to fit a multiple linear regression model for a given data set with the standard
sum-of-squares loss function. You have already transformed your data by appending a column of all ones,
which resulted in a final data matrix:

X =


1 x1,1 x1,2 . . . x1,d

1 x2,1 x2,2 . . . x2,d

...
...

...
1 xn,1 xn,2 . . . xn,d


However, your model does not seem to be working well. It obtains poor loss in both training and test.



(a) A friend suggests that you should try mean centering your data columns. In other words, for each i,
compute the column mean x̄i =

1
n

∑n
j=1 xj,i and subtract x̄i from every entry in column i. Note that we

won’t mean center the first column, as doing so would set the 1s to 0s. You try this, but mean centering
gives no improvement in the model loss at all.

Use a mathematical argument to explain why this is the case. Hint: It does not depend on the specific
data set – mean centering will never help improve a multiple linear regression model!

(b) Another friend suggests normalizing your data columns to have unit standard deviation. In other words

for each i, compute the column standard deviation σi =
√

1
n

∑n
j=1(xj,i − x̄i)2 and divide every column

by σi. Again you try it, but normalizing gives no improvement in the model loss at all.

Use a mathematical argument to explain why this is the case.

(c) Would your answers above change if you are using ℓ1 loss or ℓ∞ loss instead of sum-of-squares (ℓ2) loss?

Problem 5: Student Question: Slightly More Efficient One-hot Encoding (5pt bonus)

A student in Section B of the class made the following thoughtful observation. Suppose we have a binary
categorical variable (e.g., a column that takes values manual transmission or automatic transmission

for the car dataset). Typically, we would encode this categorical variable using just one column of 0’s and
1’s. However, one-hot encoding would actually use two columns:

standard encoding︷︸︸︷

0
0
1
0
1
1
1


.

one-hot encoding︷ ︸︸ ︷

0 1
0 1
1 0
0 1
1 0
1 0
1 0


.

The first column is an indicator for if the car falls into the category manual transmission and the second
is an indicator for if it falls into the category automatic transmission. A natural question is if a more
compact representation also exists for k > 2 categories. Can we always encode k categories with k − 1
columns that do not encode unintentional linear relationship?

Prove that this is possible for multivariate linear regression. In particular, given a set of k columns
obtained via one-hot encoding, prove that we can always remove any one of the columns and the output of
fitting a linear model with not change. I.e., suppose β∗ = argminβ ∥Xβ − y∥22, where X is our data matrix

after one-hot encoding, and β̃ = argminβ ∥X̃β − y∥22, where X̃ is obtained by removing a single one-hot
encoded column from X. For example, if we had a feature with three categories, we might have:

X︷ ︸︸ ︷

. . . 0 0 1

. . . 0 1 0

. . . 1 0 0
... . . .

... 0 1 0
. . . 1 0 0
. . . 1 0 0
. . . 0 0 1


.

X̃︷ ︸︸ ︷

. . . 0 0

. . . 0 1

. . . 1 0
... . . .

... 0 1
. . . 1 0
. . . 1 0
. . . 0 0


.

Your goal is to prove that ∥X̃β̃ − y∥22 = ∥Xβ∗ − y∥22. As usual, assume that X contains an “intercept”
column consisting of all ones.
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