
CS-GY 6923: Lecture 2

Multiple Linear Regression + Feature

Transformations + Model Selection

NYU Tandon School of Engineering, Akbar Rafiey

1

Course news

• First lab assignment lab1.ipynb due Wednesday, by

midnight.

• Lab 02 will be posted this weekend.

2

Recap: supervised learning

Training Dataset:

• Given input pairs (x1, y1), . . . , (xn, yn).

• Each xi is an input data vector (the predictor).

• Each yi is a (continuous) output variable (the target).

Objective:

• Have the computer automatically find some function f (x)

such that f (xi) is close to yi for the input data.

Standard approach: Convert the supervised learning problem to a

multi-variable optimization problem.

3

Supervised learning definitions

What are the three components needed to setup a supervised

learning problem?

• Model fω(x): Class of equations or programs which map input x to

predicted output. We want fω(xi) → yi for training inputs.

• Model Parameters ω: Vector of numbers. These are numerical

nobs which parameterize our class of models.

• Loss Function L(ω): Measure of how well a model fits our data.

Typically some function of fω(x1)↑ y1, . . . , fω(xn)↑ yn

Empirical Risk Minimization: Choose parameters ω→ which minimize

the Loss Function:

ω→ = argmin
ω

L(ω)

4

Simple linear regression

Simple Linear Regression

• Model: fω0,ω1(x) = ω0 + ω1 · x

• Model Parameters: ω0,ω1

• Loss Function: L(ω0,ω1) =
∑n

i=1(yi ↑ fω0,ω1(xi))
2

Goal: Choose ω0,ω1 to minimize

L(ω0,ω1) =
∑n

i=1(yi ↑ ω0 ↑ ω1xi)2.

Simple closed form solution: ω1 = εxy/ε2
x ,ω0 = ȳ ↑ ω1x̄ . How did

we solve for this solution?

5

Example from last class

Predict miles per gallon of a vehicle given information about its

engine/make/age/etc.

6

Multiple linear regression

6

More common goal

Predict target y using multiple features, simultaneously.

Motivating example: Predict diabetes progression in patients

after 1 year based on health metrics. (Measured via numerical

score.)

Features: Age, sex, average blood pressure, six blood serum

measurements (e.g. cholesterol, lipid levels, iron, etc.)

Demo in demo diabetes.ipynb (Demo 3).

7

Libraries for this demo

Introducing Scikit Learn.

8

Scikit learn

Pros:

• One of the most popular “traditional” ML libraries.

• Many built in models for regression, classification, dimensionality

reduction, etc.

• Easy to use, works with ‘numpy‘, ‘scipy‘, other libraries we use.

• Great for rapid prototyping, testing models.

Cons:

• Everything is very “black-box”: di!cult to debug, understand why

models aren’t working, speed up code, etc.

9

Scikit learn

Modules used:

• datasets module contains a number of pre-loaded datasets.

Saves time over downloading and importing with pandas.

• linear model can be used to solve Multiple Linear

Regression. A bit overkill for this simple model, but gives you

an idea of sklearn’s general structure.

10

The data matrix

Target variable:

• Scalars y1, . . . , yn for n data examples (a.k.a. samples).

Predictor variables:

• d dimensional vectors x1, . . . , xn for n data examples and d

features

11

2-[

-> f

>

nxc

Linear algebra review

Now it the time to review your linear algebra!

Notation:

• Let X be an n ↓ d matrix. Written X ↔ Rn→d .

• xi is the i
th row of the matrix.

• x(j) is the j
th column.

• xij is the i , j entry.

• For a vector y, yi is the i
th entry.

• XT is the matrix transpose.

• yT is a vector transpose.

12

& -

X ad XTepdxn

Linear algebra review

Things to remember:

• Matrix multiplication. If we multiply X ↔ Rn→d by Y ↔ Rd→k

we get XY = Z ↔ Rn→k .

• Inner product/dot product. ↗y, z↘ =
∑n

i=1 yizi .

• ↗y, z↘ = yT z = zTy.

• Euclidean norm: ≃y≃2 =
√
yTy.

• (XY)T = YTXT .

13

& D.

&

-
=31 X n

i= 1

2= 21 ,2:] lig=

Linear algebra review

Things to remember:

• Identity matrix is denoted as I.

• “Most” square matrices have an inverse: i.e. if Z ↔ Rn→n,

there is a matrix Z↑1 such that Z↑1Z = ZZ↑1 = I.

• Let D = diag(d) be a diagonal matrix containing the entries

in d.

• XD scales the columns of X. DX scales the rows.

14

==[P)
ne

]D-lin) exp :(
*

y

Linear algebra review

You also need to be comfortable working with matrices in numpy .

Go through the demo numpy matrices.ipynb (Demo 1) slowly.

15

The data matrix

Target variable:

• Scalars y1, . . . , yn for n data examples (a.k.a. samples).

Predictor variables:

• d dimensional vectors x1, . . . , xn for n data examples and d

features

Assume first columns contains all 1’s. If it doesn’t append on a

column of all 1’s.

16

Multiple linear regression

Data matrix indexing:

X =





x11 x12 . . . x1d

x21 x22 . . . x2d

x31 x32 . . . x3d
...

...
...

xn1 xn2 . . . xnd





Multiple Linear Regression Model:

Predict yi → ω1xi1 + ω2xi2 + . . .+ ωdxid

The rate at which diabetes progresses depends on many factors,

with each factor having a di”erent magnitude e”ect.

17

f
,

(4)= Bo+ B,X
u

Xii-

Mu

Multiple linear regression

X =





x11 x12 . . . x1d

x21 x22 . . . x2d

x31 x32 . . . x3d
...

...
...

xn1 xn2 . . . xnd




=





1 x12 . . . x1d

1 x22 . . . x2d

1 x32 . . . x3d
...

...
...

1 xn2 . . . xnd





Multiple Linear Regression Model:

Predict yi → ω1 + ω2xi2 + . . .+ ωdxid

In this case, ω1 serves as the “intercept” parameter.

18

↓

-

Multiple linear regression

Multiple Linear Regression Model:

Predict yi → ω1xi1 + ω2xi2 + . . .+ ωdxid

Data matrix:

X =





x11 x12 . . . x1d

x21 x22 . . . x2d

x31 x32 . . . x3d
...

...
...

xn1 xn2 . . . xnd




=





1 x12 . . . x1d

1 x22 . . . x2d

1 x32 . . . x3d
...

...
...

1 xn2 . . . xnd





Linear algebraic form:

yi ⇐ ↗xi ,ε↘
y ⇐ Xε

19

-

-
BBX

2)) =

Multiple linear regression

Linear Least-Squares Regression.

• Model Parameters:

ε =





ω1
ω2
...

ωd





• Model:

fω(x) = ↗x,ε↘

• Loss Function:

L(ε) =
n∑

i=1

|yi ↑ ↗xi ,ε↘|2

= ≃y ↑ Xω≃22 20

·I

Linear algebraic form of loss function

21

((B) = 11 y - XB/

2=(
nxd <XnsBY

ux-(-
uX] On

112-XBI (bi-xiBs?

Loss minimization

Machine learning goal: minimize the loss function

L(ε) : Rd ⇒ R.

Find possible optima by determining for which εT = [ω1, . . . ,ωd]

all the gradient equals 0. I.e. when do we have:

⇑L(ε) =





εL
εω1
εL
εω2
...
εL
εωd




=





0

0
...

0





22

Gradient

Loss function:

L(ε) = ≃y ↑ Xε≃22

Gradient:

↑2 · XT (y ↑ Xε)

Can check that this is equal to 0 if ε =
(
XTX

)↑1
XTy. There are

no other options, so this must be the minimum.

23

-2XT(y - XB) = 0 = X y - XTX = 0 "I

= x
+

y =
x XB = (xx)xTy)(x)3

Single variable warmup

What is the derivative of: f (x) = x
2?

24

himf(x)m
=Lim Lim 8 +2

558
5-0

-2x

Gradient

Loss function: L(ε) = ≃y ↑ Xε≃22

25

Lin-Lim
a b

890
S Ienf)

=LinXB-SMel
-XBIE es =[]

50 S

#+y+
= Lime lla-bll2 =

- (xx)T(y - XB) =e)

Multiple linear regression solution

Take away: simple form for the gradient means that multiple linear

regression models are easy and e!cient to optimize.

ε↓ = argmin
ω

≃y ↑ Xε≃22 =
(
XTX

)↑1
XTy

• Often the “go to” first regression method. Throw your data in

a matrix and see what happens.

• Serve as the basis for much richer classes of models.

26

Multiple linear regression solution

Need to compute ε↓ = argminω ≃y ↑ Xε≃22 =
(
XTX

)↑1
XTy.

• Main cost is computing (XTX)↑1 which takes O(nd2) time.

• Can solve slightly faster using the method

numpy.linalg.lstsq, which is running an algorithm based

on QR decomposition.

• For larger problems, can solve much faster using an iterative

methods like scipy.sparse.linalg.lsqr.

Will learn more about iterative methods when we study Gradient

Descent.

27

Encoding data as a numerical matrix

It is not always immediately clear how to do this! One of the first

issue we run into is categorical data:

x1 = [42, 4, 104, hybrid, ford]

x2 = [18, 8, 307, gas, bmw]

x2 = [31, 4, 150, gas, honda]

...

28

Encoding data as a numerical matrix

Binary data is easy to deal with – pick one category to be 0, one

to be 1. The choice doesn’t matter – it will not impact the overall

loss of the model

x1 = [42, 4, 104, hybrid, ford]

x2 = [18, 8, 307, gas, bmw]

x2 = [31, 4, 150, gas, honda]

...

x1 = [42, 4, 104, 1, ford]

x2 = [18, 8, 307, 0, bmw]

x2 = [31, 4, 150, 0, honda]

...
29

Dealing with categorical variables

What about a categorical predictor variable for car make with more

than 2 options: e.g. Ford, BMW, Honda. How would you

encode as a numerical column?




ford

ford

honda

bmw

honda

ford





⇒









30

g

O

I

2

I
G

Nissan S

One hot encoding

Better approach: One Hot Encoding.




ford

ford

honda

bmw

honda

ford





⇒





1 0 0

1 0 0

0 1 0

0 0 1

0 1 0

1 0 0





• Create a separate feature for every category, which is 1 when

the variable is in that category, zero otherwise.

• Not too hard to do by hand, but you can also use library

functions like sklearn.preprocessing.OneHotEncoder.

Avoids adding inadvertent linear relationships.
31

g

z

g

8

O

①
Nissan 0001

Transformed linear models

31

Example from last time

Instead of fitting the model mpg → ω0 + ω1 · horsepower, fit the
model mpg → ω0 + ω1 · 1/horsepower.

How would you know to make such a transformation?

Better approach: Choose a more flexible non-linear model class.

32

Transformed linear models

Suppose we have singular variate data examples (x , y). We could

fit the non-linear polynomial model:

y → ω0 + ω1x + ω2x
2 + ω3x

3.

Claim: This can be done using an algorithm for multivariate

regression!

33

-

Transformed linear models

Transform into a multiple linear regression problem:

X =





1 x1 x
2
1 x

3
1

1 x2 x
2
2 x

3
2

1 x3 x
2
3 x

3
3

...
...

...

1 xn x
2
n x

3
n





What is the output of Xε?

34

-
(x,, B) = B , + P2X) +

ByX,By

Transformed linear models

More generally, have each column j is generated by a di”erent

basis function ϑj(x). Could have:

• ϑj(x) = x
q

• ϑj(x) = sin(x)

• ϑj(x) = cos(10x)

• ϑj(x) = 1/x

When might you want to include sins and cosines?

35

=[
<X , p) = Pi + BzXz + By sin

Transformed linear models

When might you want to include sins and cosines?

Time series data (figure from Lyft website):

There is usually not much harm in including irrelevant variable

transformation.
36

Multinomial model

Transformations can also be for multivariate data.

Example: Multinomial model.

• Given a dataset with target y and predictors x , z .

• For inputs (x1, z1), . . . , (xn, zn) construct the data matrix:





1 x1 x
2
1 z1 z

2
1 x1z1

1 x2 x
2
2 z2 z

2
2 x2z2

...
...

...

1 xn x
2
n zn z

2
n xnzn





• Captures non-linear interaction between x and z .

37

-
Bie + B6X, Z ,

Model selection

Remainder of lecture: Learn about model selection, test/train

paradigm, and cross-validation through a simple example.

Check out Demo 4.

38

Fitting a polynomial

Simple experiment:

• Randomly select data points x1, . . . , xn ↔ [↑1, 1].

• Choose a degree 3 polynomial p(x).

• Create some fake data: yi = p(xi) + ϖ where ϖ is a random

number (e.g random Gaussian).

39

2x) = Bo + B ,x +Bzx+B

Fitting a polynomial

Simple experiment:

• Use multiple linear regression to fit a line (degree 1

polynomial). This model seems underfit.

40

Fitting a polynomial

Simple experiment:

• Use multiple linear regression to fit a degree 3 polynomial.

Almost perfectly captures the true function!

41

Fitting a polynomial

What if we fit a higher degree polynomial?

• Fit degree 5 polynomial under squared loss.

• Fit degree 10 polynomial under squared loss.

42

Fitting a polynomial

Even higher?

• Fit degree 40 polynomial under squared loss. This model

seems overfit.

The model “overreacts” to minor variations in the data, which can

lead to some bad behavior.. 43

Quick aside on numerical issues

In the demo we have you use numpy.polynomial.polynomial.

However, as we discussed early, we can use multiple linear

regression instead by constructing the data matrix:

X =





1 x1 x
2
1 x

3
1

1 x2 x
1
2 x

3
2

1 x3 x
2
3 x

3
3

...
...

...

1 xn x
2
n x

3
n





Then find polynomial coe!cents as ε = (XTX)↑1XTy.

44

Quick aside on numerical issues

Degree 3 Degree 22

45

Quick aside on numerical issues

Degree 23 Degree 30

Has to due with numerical roundo” error. Scipy still uses linear

regression, but with extra “tricks” to avoid numerical issues. 46

Quick aside on numerical issues

• Your computer can easily deal with both very large and very

small numbers. Underflow and overflow are extremely unlikely

to be issues in floating point arithmetic.

• The issue is when you compute using numbers of very

di”ering magnitude.

47

Quick aside on numerical issues

Recall that we chose each xi ↔ [↑1, 1] uniformly at random.

X =





1 x1 x
2
1 x

3
1

1 x2 x
1
2 x

3
2

1 x3 x
2
3 x

3
3

...
...

...

1 xn x
2
n x

3
n





48

->
X

,

P.
- - X3

Back to the problem at hand

Underfit, overfit, just right.
49

Model order selection

For high-dimensional data, we cannot produce such easy to read

plots. How can we automatically detect when we have “underfit”

or “overfit” to choose the right model?

50

Model complexity vs. loss

Typically, the more complex our model, the better our loss:

For transformed linear models, this is formally true: more feature

transformations leads to lower loss. 51

Model selection

Consider X ↔ Rn→d and X̄ = [X, z] ↔ Rn→d+1 with one additional

column appended on.

Claim:

min
ω̄↔Rd+1

≃X̄ε̄ ↑ y≃22 ⇓ min
ω↔Rd

≃Xε ↑ y≃22.

52

B
*
= argmin lIXB-y

?

B = /B
*

) = VITB' -y12 = 11x*y112

Model selection

The more complex our model class the better our loss:

So training loss alone is not usually a good metric for model

selection. 53

Model selection

Problem: Small loss does not imply generalization.

Generalization: How well do we do on new data.

54

P

&

Model selection

Solution: Directly test model on “new data”.

• Train loss decreases as model complexity grows.

• Test loss “turns around” once our model gets too complex.

Minimized around degree 3↑ 4. 55

Fest

Train-test paradigm

More reasonable approach: Evaluate model on fresh test data

which was not used during training.

Test/train split:

• Given data set (X, y), split into two sets (Xtrain, ytrain) and

(Xtest, ytest).

• Train q models f (1), . . . , f (q) of varying complexity by finding

parameters which minimize the loss on (Xtrain, ytrain).

• Evaluate loss of each trained model on (Xtest, ytest).

• Pick model with lowest test loss.

Sometimes you will see the term validation set instead of test set.

Sometimes there will be both: use validation set for choosing the model,

and test set for getting a final performance measure.

56

The fundamental curve of ML

The above trend is fairly representative of what we tend to see

across the board:

57

Generalization error

If the test loss remains low, we say that the model generalizes.

Test lost is often called generalization error.

58

Train-test paradigm

Typical train-test split: 90-70% / 10-30%. Trade-o” between

between optimization of model parameters and better estimate of

model performance.

59

K-fold cross validation

• Randomly divide data in K parts.
• Typical choice: K = 5 or K = 10.

• Use K ↑ 1 parts for training, 1 for test.

• For each model, compute test loss Lts for each “fold”.

• Choose model with best average loss.

• Retrain best model on entire dataset.

Is there any disadvantage to choosing K larger?

60

Train-test intuition

Is “test error” the end goal though? Don’t we care about “future”

error?

Intuition: Models which perform better on the test set will

generalize better to future data.

Goal: Introduce a little bit of formalism to better understand what

this means. What is “future” data?

61

Statistical learning model

Statistical Learning Model:

• Assume each data example is randomly drawn from some

distribution (x, y) ⇐ D.

E.g. x1, . . . , xd are Gaussian random variables with parameters

µ1,ε1, . . . , µd ,εd .

This is not really a simplifying assumption! The distribution could

be arbitrarily complicated.
62

Risk

Statistical Learning Model:

• Assume each data example is randomly drawn from some

distribution (x, y) ⇐ D.

• Define the Risk of a model/parameters:

R(f ,ω) = E(x,y)↗D [L (f (x,ω), y)]

here L is our loss function (e.g. L(z , y) = |z ↑ y | or
L(z , y) = (z ↑ y)2).

Ultimate Goal: Find model f ↔ {f (1), . . . , f (q)} and parameter

vector ω to minimize the R(f ,ω).

63

Risk

• (Population) Risk:

R(f ,ω) = E(x,y)↗D [L (f (x,ω), y)]

• Empirical Risk: Draw (x1, y1), . . . , (xn, yn) ⇐ D

RE (f ,ω) =
1

n

n∑

i=1

L (f (x,ω), y)

64

Empirical risk

For any fixed model f and parameters ω,

E [RE (f ,ω)] = R(f ,ω).

Only true if f and ω are chosen without looking at the data used

to compute the empirical risk.

65

Model selection

• Train q models (f (1),ω↓
1), . . . , (f

(q),ω↓
q).

• For each model, compute empirical risk RE (f (i),ω
↓
i) using test

data.

• Since we assume our original dataset was drawn independently

from D, so is the random test subset.

No matter how our models were trained or how complex they are,

RE (f (i),ω
↓
i) is an unbiased estimate of the true risk R(f (i),ω↓

i) for

every i . Can use it to distinguish between models.

66

Model selection example

bag-of-words models and n-grams

Common way to represent documents (emails, webpages, books)

as numerical data. The ultimate example of 1-hot encoding.

bag-of-words

67

Model selection example

bag-of-words models and n-grams

Common way to represent documents (emails, webpages, books)

as numerical data. The ultimate example of 1-hot encoding.

bi-grams

68

Model selection example

bag-of-words models and n-grams

Common way to represent documents (emails, webpages, books)

as numerical data. The ultimate example of 1-hot encoding.

tri-grams

69

Model selection example

Models of increasing order:

• Model f (1)ε1
: spam filter that looks at single words.

• Model f (2)ε2
: spam filter that looks at bi-grams.

• Model f (3)ε3
: spam filter that looks at tri-grams.

• . . .

“interest” “low interest” “low interest loan”

Increased length of n-gram means more expressive power.

Will be very relevant in our lab on generative language

models!

70

Model selection example

Electrocorticography ECoG (next lab):

• Implant grid of electrodes on surface of the brain to measure

electrical activity in di”erent regions.

• Predict hand motion based on ECoG measurements.

• Model order: predict movement at time t using brain signals

at time t, t ↑ 1, . . . , t ↑ q for varying values of q.
71

Autoregressive model

Predicting time t based on a linear function of the signals at time

t, t ↑ 1, . . . , t ↑ q is not the same as fitting a line to the time

series. It’s much more expressive.

72

Model selection lab tip

Electrocorticography ECoG lab:

First lab where computation actually matters (solving

regression problems with ⇐ 40k examples, ⇐ 1500 features)

Makes sense to test and debug code using a subset of the data.

73

Adaptive data analysis

Slight caveat: The train-test paradigm is typically not how

machine learning or scientific discovery works in practice!

Typical workflow:

• Train a class of models.

• Test.

• Adjust class of models.

• Test.

• Adjust class of models.

• Cont...

Final model implicitly depends on test set because performance on

the test set guided how we changed our model.

74

Adaptive data analysis

Popularity of ML benchmarks and competitions leads to

adaptivity at a massive scale.

Kaggle (various competitions)

Imagenet (image classification and categorization) 75

Adaptive data analysis

Is adaptivity a problem? Does it lead to over-fitting? How

much? How can we prevent it? All current research. Related to

the problem of “p-value hacking” in science.

76

Imagenet dataset

Collected by Fei-Fei Li’s group at Stanford in 2006ish and labeled

using Amazon Mechanical Turk.

We now have neural network models that can solve these

classification problems with > 95% accuracy. 77

Adaptive data analysis

Do ImageNet Classifiers Generalized to ImageNet?

Interestingly, when comparing popular vision models on “fresh”

data, while performance dropped across the board, the relative

rank of model performance did not change significantly.

78

