CS-GY 6923: Lecture 3 Regularization + Bayesian Perspective

NYU Tandon School of Engineering, Akbar Rafiey

- The first written HW has been posted, due Feb 19.
- 10% extra credit will be given if solutions are typewritten using LaTeX, Markdown, etc.
- All solutions must be written independently.
- Reminder: Lab 02 due Feb 12.

Model selection:

- Train models $f_{\theta_1}^{(1)}, \ldots, f_{\theta_q}^{(q)}$ independently on training data to find optimal parameters $\theta_1^*, \ldots, \theta_q^*$.
- Check loss $L_{test}(f^{(1)}, \theta_1^*), \dots, L_{test}(f^{(q)}, \theta_q^*)$ on test data.
- Select model with lowest test lost.

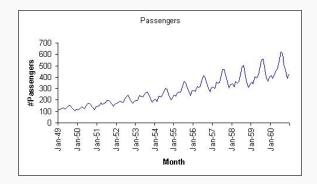
Can be used for arbitrary sets of models. Often used when you are not sure how "complex" your model should be for the data, and want to find a sweet spot between a good fit, and not overfitting.

Electrocorticography ECoG (Lab 02):

• Implant grid of electrodes on surface of the brain to measure electrical activity in different regions.

- Predict hand motion based on ECoG measurements.
- Model order: predict movement at time t using brain signals at time t, t 1, ..., t q for varying values of q.

Predicting time t based on a linear function of the signals at time t, t - 1, ..., t - q is <u>not the same</u> as fitting a line to the time series. It's much more expressive.



Model selection lab tip

Electrocorticography ECoG lab:

First lab where computation actually matters (solving regression problems with $\sim 40k$ examples, ~ 1500 features)

Makes sense to test and debug code using a subset of the data.

Slight caveat: The train-test paradigm is typically not how machine learning or scientific discovery works in practice!

Typical workflow:

- Train a class of models.
- Test.
- Adjust class of models.
- Test.
- Adjust class of models.
- Cont...

Final model implicitly depends on test set because performance on the test set guided how we changed our model.

Adaptive data analysis

Popularity of ML benchmarks and competitions leads to adaptivity at a massive scale.

11 Active Competitions		
#DFDC	Deepfake Detection Challenge Identify videos with facial or vice manpulations Featured - Code Competition - 2 months to go - % video data, online video	\$1,000,000 1,595 teams
6	Cocogle QUEST Q&A Labeling Improving automated understanding of complex question answer content Featured - Code Competition - 19 hours to go - % text data, nip	\$25,000 1,559 teams
	Real or Not? NLP with Disaster Tweets Predet which Tweets are about real datatiers and which ones are not Getting Started - Ongoing - % text data, binary classification	\$10,000 2,657 teams
В	Bengali Al Handwritten Grapheme Classification Classify the components of hardwritten Bengal Besach - Coae Competition - a morth to go - & multiclass classification, image data	\$10,000 1,194 teams

Kaggle (various competitions)

14,197,122 images, 21841 synsets indexed

Explore Download Challenges Publications Updates About

Not logged in. Login I Signup

Imagenet (image classification and categorization)

Is adaptivity a problem? Does it lead to over-fitting? How much? How can we prevent it?

REPORT

The reusable holdout: Preserving validity in adaptive data analysis

Cynthia Dwork^{1,*}, Vitaly Feldman^{2,*}, Moritz Hardt^{3,*}, Toniann Pitassi^{4,*}, Omer Reingold^{5,*}, Aaron Roth^{6,*}

+ See all authors and affiliations

Science 07 Aug 2015: Vol. 349, Issue 6248, pp. 636-638 DOI: 10.1126/science.aaa9375

Do ImageNet Classifiers Generalize to ImageNet?

Benjamin Recht^{*} Rebecca Roelofs UC Berkelev UC Berkelev

ofs Ludwig Schmidt y UC Berkeley Vaishaal Shankar UC Berkeley

Abstract

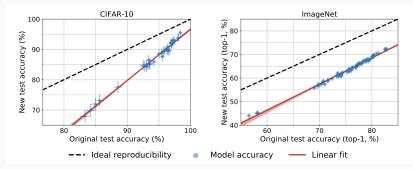
We build new test ests for the CIPAR-10 and ImageNet datasets. Both benchmarks have been the focus of intemes research for almost a decade, raising the danger of overfitting to excessively re-used test sets. By closely following the original dataset creation processes, we test to what extent current classification models generalize to new data. We evaluate a broad range of models and find accuracy drops of 3% - 15% on CIFAR-10 and 11% - 14% on ImageNet. However, suggest that the accuracy drops are not caused by adaptivity, but by the models' inability to generalize to slightly "barded" images than those found in the original test sets.

Collected by Fei-Fei Li's group at Stanford in 2006ish and labeled using Amazon Mechanical Turk.

We now have neural network models that can solve these classification problems with >95% accuracy.

Adaptive data analysis

Do ImageNet Classifiers Generalized to ImageNet?

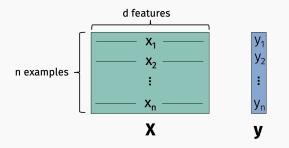


Interestingly, when comparing popular vision models on "fresh" data, while performance dropped across the board, the relative rank of model performance did not change significantly.

Regularization

- In the model selection examples we discussed last class, we had full control over the complexity of the model: could range from underfitting to overfitting.
- In practice, you often don't have this freedom. Even the most basic model might lead to overfitting.

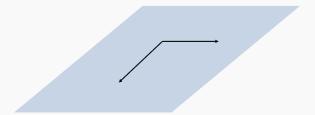
Example: Linear regression model where $d \ge n$.



Can (almost) always find β so that $\mathbf{X}\beta = \mathbf{y}$ exactly.

Why?

Claim: For <u>almost all</u> sets of *n*, length *n* vectors $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$, we can write any vector \mathbf{y} as a linear combination of these vectors.

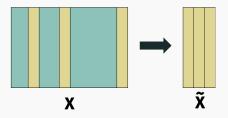


I.e., can find some coefficients so that $\beta_1 \mathbf{x}^{(1)} + \ldots + \beta_d \mathbf{x}^{(d)} = \mathbf{X}\boldsymbol{\beta} = \mathbf{y}.$

- We will discuss some models later in the class where zero training loss is not necessarily a bad sign: *k*-nearest neighbors, some neural nets.
- Typically however it will be a sign of overfitting, as in the polynomial regression example.

Feature selection

Select some subset of $\ll n$ features to use in model:



Filter method: Compute some metric for each feature, and select features with highest score.

• Example: compute loss or R^2 value when each feature in **X** is used in single variate regression.

Any potential limitations of this approach?

Exhaustive approach: Pick best subset of q features. Train $\binom{d}{q}$ models.

Faster approach: Greedily select q features.

Stepwise Regression:

- Forward: Step 1: pick single feature that gives lowest loss.
 Step k: pick feature that when combined with previous k 1 chosen features gives lowest loss.
- **Backward:** Start with all of the features. Greedily eliminate those which have least impact on model performance.

Feature selection deserves more than two slides, but we won't go into too much more detail!

Regularization: Discourage overfitting by adding a <u>regularization</u> penalty to the loss minimization problem.

 $\min_{\beta} \left[L(\beta) + \frac{Reg(\beta)}{l} \right].$

Alternative approach

Regularization: Discourage overfitting by adding a <u>regularization</u> penalty to the loss minimization problem.

 $\min_{\beta} \left[L(\beta) + \operatorname{Reg}(\beta) \right].$

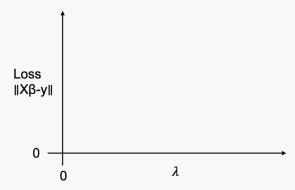
Example: Least squares regression: $L(\beta) = \|\mathbf{X}\beta - \mathbf{y}\|_2^2$.

- Ridge regression (ℓ_2) : $Reg(\beta) = \lambda \|\beta\|_2^2$
- LASSO (least absolute shrinkage and selection operator) (ℓ_1): $Reg(\beta) = \lambda \|\beta\|_1$
- Elastic net: $Reg(\beta) = \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_2^2$

Note that $\arg \min_{\beta} [L(\beta) + Reg(\beta)] \neq \arg \min_{\beta} [L(\beta)]$

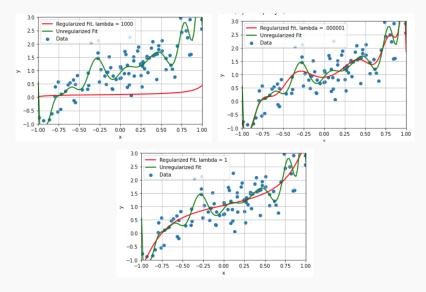
Ridge regression: $\min_{\beta} \left(\|\mathbf{X}\beta - \mathbf{y}\|_2^2 + \lambda \|\beta\|_2^2 \right)$.

- As $\lambda \to \infty$, we expect $\|\beta\|_2^2 \to 0$ and $\|\mathbf{X}\beta \mathbf{y}\|_2^2 \to \|\mathbf{y}\|_2^2$.
- By choosing different values of λ we have models of varying accuracy/complexity.



Polynomial examples

Fit degree 20 polynomial with varying levels of regularization.

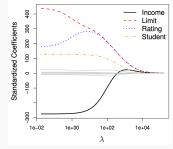


.

22

Ridge regression: $\min_{\beta} \left(\|\mathbf{X}\beta - \mathbf{y}\|_2^2 + \lambda \|\beta\|_2^2 \right)$.

- As $\lambda \to \infty$, we expect $\|\beta\|_2^2 \to 0$ and $\|\mathbf{X}\beta \mathbf{y}\|_2^2 \to \|\mathbf{y}\|_2^2$.
- Feature selection methods attempt to set many coordinates in β to 0. Ridge regularizations encourages coordinates to be close to zero.

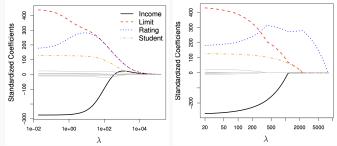


Ridge regularization

How do we minimize: $L_R(\beta) = \|\mathbf{X}\beta - \mathbf{y}\|_2^2 + \lambda \|\beta\|_2^2$?

Lasso regularization: $\min_{\beta} \|\mathbf{X}\beta - \mathbf{y}\|_{2}^{2} + \lambda \|\beta\|_{1}$.

- As $\lambda \to \infty$, we expect $\|\beta\|_1 \to 0$ and $\|\mathbf{X}\beta \mathbf{y}\|_2^2 \to \|\mathbf{y}\|_2^2$.
- Typically encourages subset of β_i's to go to zero, in contrast to ridge regularization.



Ridge regularization

Lasso Regularization

Pros:

- Simpler, more interpretable model.
- More intuitive reduction in model order.

Cons:

- No closed form solution because $\|\beta\|_1$ is not differentiable.
- Can be solved with iterative methods, but generally not as quickly as ridge regression.

Notes:

- Model selection/cross validation used to choose optimal scaling λ on $\lambda \|\beta\|_2^2$ or $\lambda \|\beta\|_1$.
- Often grid search for best parameters is performed in "log space". E.g. consider [λ₁,..., λ_q] = 1.5^[-4,-3,-2,-1,-0,1,2,3,4].
- Regularization methods are <u>not invariant</u> to data scaling. Typically when using regularization we mean center and scale columns to have unit variance.

The bayesian/probabilistic modeling perspective

- Data Examples: $x_1, \ldots, x_n \in \mathbb{R}^d$
- Target: $y_1, \ldots, y_n \in \{0, 1, \ldots, q-1\}$ when there are q classes.
 - Binary Classification: q = 2, so each $y_i \in \{0, 1\}$.
 - Multi-class Classification: q > 2.¹

¹Note that there is also <u>multi-label</u> classification where each data example may belong to more than one class.

- Medical diagnosis from MRI: 2 classes.
- MNIST digits: 10 classes.
- Full Optical Character Regonition: 100s of classes.
- ImageNet challenge: 21,000 classes.

Running example today: Email Spam Classification.

Classification can (and often is) solved using the same **loss-minimization framework** we saw for regression.

We won't see that today! We're going to use classification as a window into another way of thinking about machine learning.

Will give an interesting new justifications for tools like regularization. Will also give us an approach for generative ML.

Rest of Today: ML from a **Probabilistic Modeling/Bayesian Perspective**. In a <u>Bayesian</u> or <u>Probabilistic</u> approach to machine learning we always start by conjecturing a

probabilistic model

that plausibly could have generated our data.

- The model guides how we make predictions.
- The model typically has unknown parameters $\vec{\theta}$ and we try to find the most reasonable parameters based on **observed** data (more on this later in lecture).

Typically we try to keep things simple!

Exercise: Come up with a probabilistic model for the following data set $(x_1, y_1), \ldots, (x_n, y_n)$.

• For *n* **NYC** apartments: each *x_i* is the size of the apartment in square feet. Each *y_i* is the monthly rent in dollars.

What are the unknown parameters of your model. What would be a guess for their values? How would you confirm or refine this guess using data? **Dataset:** $(x_1, y_1), \ldots, (x_n, y_n)$

Description: For *n* **NYC apartments**: each x_i is the size of the apartment in square feet. Each y_i is the monthly rent in dollars.

Model:

Dataset: $(x_1, y_1), \ldots, (x_n, y_n)$

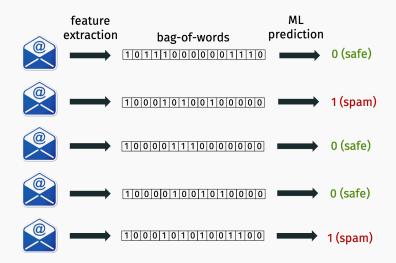
Description: For *n* **students**: each $x_i \in \{Fresh., Soph., Jun., Sen.\}$ indicating class year. Each $y_i \in \{0, 1\}$ with zero indicating the student has not taken machine learning, one indicating they have.

Model:

Goal:

- Build a probabilistic model for a binary classification problem.
- Estimate parameters of the model.
- From the model derive a classification rule for future predictions (the Naive Bayes Classifier).

Spam prediction



Both target labels and data vectors are binary.

Let's create a model that generates spam and non-spam emails. **Observation:** Since bag-of-words features don't care about word order, our model does not need to either.

Common approach: assign a probability p_i ∈ [0, 1] to word i.
 Set x_i = 1 with probability p_i, x_i = 0 with probability 1 − p_i.

$$p_{
m the} = p_{
m calendar} = p_{
m toothbrush} =$$

२ toot	thbrush	× 荘 ● Active ~ ⑦ 像	🤇
Mail	Conversations Spaces	From * Any time * Has attachment To * Exclude Promotions Is unread	dvanced ()
	G i	1–17 of 17 <	•
□ ☆	> Amazon Marketplace	Inbox akbar, will you rate your transaction at Amazon.com? - Image" align="top" Unsubscribe 🗉 🔟	5 0
	> Amazon.com	Inbox Your Amazon.com order of "mopio Futon Sofa Bed" and 10 more items Amazon.com Order Confir	Sep 10
□ ☆	∑ Amazon.com	Inbox The Labor Day Sale is here - nas Colgate Toothbrush Limited time deal -35% \$7.75 List Price: \$11.99	Aug 26
□☆	Σ Instacart	Inbox Your Instacart order receipt - Thanks for ordering from Instacart! Your order from CVS® was delivered	May 5
	∑ Amazon.com	Inbox Up to 40% off last-minute gifts - cl_5_3_manu_img_b Electric toothbrushes Give them (or you) the	12/17/23
□ ☆	> Instacart	Inbox 🛒 You left an item behind 🛒 You left an item behind 96 @import url("https://links.customers.i	12/3/23
□ ☆	∑ Amazon.ca	Inbox Shop epic Black Friday deals - Rechargeable Electric Toothbrush, White, HX6817/01 by Philips Sonic	11/24/23
	> Amazon.com Reviews	Inbox akbar, did 'ALIVER Nail Polish Remover' meet your expectations? Review it on Amazon - 20807	10/14/23
□ ☆	> Amazon.com Reviews	Inbox akbar, did 'FACEMADE Nail Clippers Set' meet your expectations? Review it on Amazon - 2CB0	10/4/23
□ ☆	D Amazon Marketplace	Inbox akbar, will you rate your transaction at Amazon.com? - Image" align="top" height="60" border="0" />	9/9/23
	> Amazon.com	Inbox Your Amazon.com order of "WLIVE Coffee Table Set of" and 1 more item Amazon.com Order Confi	9/5/23
□ ☆	> Amazon.com	Inbox Hooray, it's Prime Day! - Philips Sonicare Toothbrush by Philips Sonicare https://www.amazon.com/g	7/11/23
	UNHCR Canada	Inbox Last chance to give more than a gift - gift of toothbrushes, toothpaste, towels, soap and jerry cans to	12/22/22
□ ☆	> Uber Eats	Inbox Running low on essentials? - Get \$12 off a \$25+ order of hand soap, toothbrushes, and more.	7/7/22
	D Amazon.ca	Inbox Deals have landed for Cyber Monday! - Sonicare Electric Toothbrushes & Air https://www.amazon	11/27/21
□ ☆	${\scriptstyle \sum}$ Simon Fraser Dental	Inbox Referral Prize - complimentary electric toothbrush. Refer A Friend & Receive A FREE Oral-B Vitality Re	4/28/18

How can we make this model richer when we take spam into account?

• Different words tend to be more or less frequent in spam or regular emails.

Spam	Not Spam
$p_{ m won} =$	$p_{ m won} =$
$p_\$ =$	$p_\$ =$
$p_{student} =$	$p_{student} =$

Probabilistic model for email

Probabilistic model for (bag-of-words, label) pair (x, y):

- Set y = 0 with probability p_0 , y = 1 with probability $p_1 = 1 p_0$.
 - p_0 is probability an email is not spam (e.g. 99%).
 - p_1 is probability an email is spam (e.g. 1%).
- If y = 0, for each *i*, set $x_i = 1$ with prob. p_{i0} .
- If y = 1, for each *i*, set $x_i = 1$ with prob. p_{i1} .

Unknown model parameters:

- *p*₀, *p*₁,
- $p_{10}, p_{20}, \ldots p_{d0}$, one for each of the *d* vocabulary words.
- $p_{11}, p_{21}, \ldots p_{d1}$, one for each of the *d* vocabulary words.

How would you estimate these parameters?

Reasonable way to set parameters:

- Set p_0 and p_1 to the empirical fraction of not spam/spam emails.
- For each word *i*, set *p*_{i0} to the empirical probability word *i* appears in a non-spam email.
- For each word *i*, set *p*_{*i*1} to the empirical probability word *i* appears in a spam email.

Estimating these parameters from previous data examples is the only "training" we will do.

Done with modeling on to prediction

- **Probability:** p(x) the probability event x happens.
- Joint probability: p(x,y) the probability that event x and event y happen.
- Conditional Probability p(x | y) the probability x happens given that y happens.

$$p(x|y) =$$

Bayes theorem/rule

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

Proof:

Given unlabeled input (\mathbf{w} , ____), choose the label $y \in \{0, 1\}$ which is most likely given the data. Recall $\mathbf{w} = [0, 0, 1, \dots, 1, 0]$.

Classification rule: maximum a posterior (MAP) estimate.

Step 1. Compute:

- $p(y = 0 | \mathbf{w})$: prob. y = 0 given observed data vector \mathbf{w} .
- $p(y = 1 | \mathbf{w})$: prob. y = 1 given observed data vector \mathbf{w} .

Step 2. Output: 0 or 1 depending on which probability is larger.

 $p(y = 0 | \mathbf{w})$ and $p(y = 1 | \mathbf{w})$ are called **posterior** probabilities.

How to compute the posterior? Bayes rule!

$$p(y=0 \mid \mathbf{w}) = \frac{p(\mathbf{w} \mid y=0)p(y=0)}{p(\mathbf{w})}$$
(1)

posterior =
$$\frac{\text{likelihood} \times \text{prior}}{\text{evidence}}$$
 (2)

- Prior: Probability in class 0 prior to seeing any data.
- Posterior: Probability in class 0 after seeing the data.

Evaluating the posterior

Goal is to determine which is larger:

$$p(y = 0 | \mathbf{w}) = \frac{p(\mathbf{w} | y = 0)p(y = 0)}{p(\mathbf{w})}$$
vs.
$$p(y = 1 | \mathbf{w}) = \frac{p(\mathbf{w} | y = 1)p(y = 1)}{p(\mathbf{w})}$$

- We can ignore the evidence $p(\mathbf{w})$ since it is the same for both sides!
- p(y = 0) and p(y = 1) already known (computed from training data). These are our computed parameters p₀, p₁.

•
$$p(\mathbf{w} \mid y = 0) = ? p(\mathbf{w} \mid y = 1) = ?$$

Consider the example $\mathbf{w} = [0, 1, 1, 0, 0, 0, 1, 0]$.

Recall that, under our model, index *i* is 1 with probability p_{i0} if we are not spam, and 1 with probability p_{i1} if we are spam.

$$p(\mathbf{w} \mid y = 0) =$$

$$p(\mathbf{w} \mid y = 1) =$$

Final Naive Bayes Classifier

Training/Modeling: Use existing data to compute:

- $p_0 = p(y = 0), p_1 = p(y = 1)$
- For all *i* compute:

•
$$p_{i0} = p(x_i = 1 \mid y = 0)$$
 and $(1 - p_{i0}) = p(x_i = 0 \mid y = 0)$

•
$$p_{i1} = p(x_i = 1 \mid y = 1)$$
 and $(1 - p_{i1}) = p(x_i = 0 \mid y = 1)$

Prediction:

- For new input w:
 - Compute $p(\mathbf{w} \mid y = 0) = \prod_i p(w_i \mid y = 0)$
 - Compute $p(\mathbf{w} \mid y = 1) = \prod_i p(w_i \mid y = 1)$
- Return

$$\arg \max [p(\mathbf{w} \mid y = 0) \cdot p(y = 0), p(\mathbf{w} \mid y = 1) \cdot p(y = 1)]$$

Other applications of the bayesian perspective

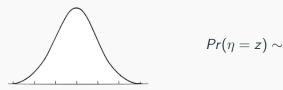
The Bayesian view offers an interesting alternative perspective on many machine learning techniques.

Example: Linear Regression.

Probabilistic model:

$$\mathbf{y} = \langle \mathbf{x}, \boldsymbol{\beta} \rangle + \eta$$

where the η drawn from $N(0, \sigma^2)$ is random Gaussian noise.

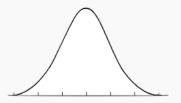


The symbol \sim means "is proportional to".

Gaussian distribution refresher

Names for the same thing: Normal distribution, Gaussian distribution, bell curve.

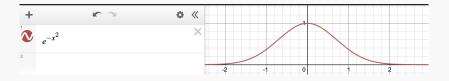
Parameterized by mean μ and variance σ^2 .



 η is a continuous random variable, so it has a probability density function $p(\eta)$ with $\int_{-\infty}^{\infty} p(\eta) d\eta = 1$

$$p(\eta) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{\eta-\mu}{\sigma})^2}$$

The important thing to remember is that the PDF falls off exponentially as we move further from the mean.



The normalizing constant in front 1/2, etc. don't matter so much.

Example: Linear Regression.

Probabilistic model:

$$y = \langle \mathbf{x}, \boldsymbol{\beta} \rangle + \eta$$

where the η drawn from $N(0, \sigma^2)$ is **random Gaussian noise**. The noise is independent for different inputs $\mathbf{x}_1, \ldots, \mathbf{x}_n$.

How should we select β for our model?

Also use a Bayesian approach!

Choose β to maximize:

$$\mathsf{posterior} = \mathsf{Pr}(\beta \mid \mathbf{X}, \mathbf{y}) = \frac{\mathsf{Pr}(\mathbf{X}, \mathbf{y} \mid \beta) \, \mathsf{Pr}(\beta)}{\mathsf{Pr}(\mathbf{X}, \mathbf{y})} = \frac{\mathsf{likelihood} \times \mathsf{prior}}{\mathsf{evidence}}$$

In this case, we don't have a prior – no values of β are inherently more likely than others.

Choose β to maximize just the likelihood:

$$\frac{\mathsf{Pr}(\mathbf{X}, \mathbf{y} \mid \beta) \mathsf{Pr}(\boldsymbol{\beta})}{\mathsf{Pr}(\mathbf{X}, \mathbf{y})} = \frac{\mathsf{likelihood} \times \mathsf{prior}}{\mathsf{evidence}}$$

This is called the maximum likelihood estimate.

Often we think of X as fixed and deterministic, and only y is generated at random in the model. This is called the <u>fixed design</u> setting. Can also consider a <u>randomized design</u> setting, but it is slightly more complicated.

In the fixed design setting our task of maximizing $\Pr(\mathbf{X},\mathbf{y} \mid \beta)$ simplifies to maximizing

 $\max_{\boldsymbol{\beta}} \Pr(\mathbf{y} \mid \boldsymbol{\beta})$

Maximum likelihood estimate

Data:



Model: $y_i = \langle \mathbf{x}_i, \beta \rangle + \eta_i$ where $p(\eta_i = z) \sim e^{-z^2/2\sigma^2}$ and η_1, \ldots, η_n are independent.

 $\mathsf{Pr}(\mathbf{y} \mid m{eta}) \sim$

Easier to work with the log likelihood:

$$\begin{aligned} \arg\max_{\beta} \Pr(\mathbf{X}, \mathbf{y} \mid \beta) &= \arg\max_{\beta} \prod_{i=1}^{n} e^{-(y_i - \langle \mathbf{x}_i, \beta \rangle)^2 / 2\sigma^2} \\ &= \arg\max_{\beta} \log\left(\prod_{i=1}^{n} e^{-(y_i - \langle \mathbf{x}_i, \beta \rangle)^2 / 2\sigma^2}\right) \\ &= \arg\max_{\beta} \sum_{i=1}^{n} -(y_i - \langle \mathbf{x}_i, \beta \rangle)^2 / 2\sigma^2 \\ &= \arg\min_{\beta} \sum_{i=1}^{n} (y_i - \langle \mathbf{x}_i, \beta \rangle)^2. \end{aligned}$$

Conclusion: Choose β to minimize:

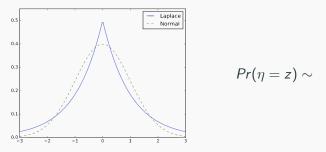
$$\sum_{i=1}^{n} (y_i - \langle \mathbf{x}_i, \boldsymbol{\beta} \rangle)^2 = \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2.$$

This is a completely different justification for squared loss!

Minimizing the ℓ_2 loss is optimal in a certain sense when you assume your data follows a linear model with i.i.d. Gaussian noise.

Bayesian regression

If we had modeled our noise η as Laplace noise, we would have found that minimizing $\|\mathbf{y} - \mathbf{X}\beta\|_1$ was optimal.



Laplace noise has "heavier tails", meaning that it results in more outliers.

This is a completely different justification for ℓ_1 loss.

We can add another layer of probabilistic modeling by also assuming β is random and comes from some distribution, which encodes our prior belief on what the parameters are.

Maximum a posteriori (MAP estimation):

$$\Pr(\beta \mid \mathbf{X}, \mathbf{y}) = \frac{\Pr(\mathbf{X}, \mathbf{y} \mid \beta) \Pr(\beta)}{\Pr(\mathbf{X}, \mathbf{y})}$$

Assume values in $\beta = [\beta_1, \dots, \beta_d]$ come from some distribution.

- Common model: Each β_i drawn from N(0, γ²), i.e. normally distributed, independent.
- Encodes a belief that we are unlikely to see models with very large coefficients.

Goal: choose β to maximize:

$$\Pr(\beta \mid \mathbf{X}, \mathbf{y}) = \frac{\Pr(\mathbf{X}, \mathbf{y} \mid \beta) \Pr(\beta)}{\Pr(\mathbf{X}, \mathbf{y})}.$$

- We can still ignore the "evidence" term Pr(X, y) since it is a constant that does not depend on β.
- $\Pr(\beta) = \Pr(\beta_1) \cdot \Pr(\beta_2) \cdot \ldots \cdot \Pr(\beta_d)$
- $\Pr(m{eta}) \sim$

Bayesian regularization

Easier to work with the log likelihood:

$$\arg \max_{\beta} \Pr(\mathbf{X}, \mathbf{y} \mid \beta) \cdot \Pr(\beta)$$

$$= \arg \max_{\beta} \prod_{i=1}^{n} e^{-(y_i - \langle \mathbf{x}_i, \beta \rangle)^2 / 2\sigma^2} \cdot \prod_{i=1}^{n} e^{-(\beta_i)^2 / 2\gamma^2}$$

$$= \arg \max_{\beta} \sum_{i=1}^{n} -(y_i - \langle \mathbf{x}_i, \beta \rangle)^2 / 2\sigma^2 + \sum_{i=1}^{d} -(\beta_i)^2 / 2\gamma^2$$

$$= \arg \min_{\beta} \sum_{i=1}^{n} (y_i - \langle \mathbf{x}_i, \beta \rangle)^2 + \frac{\sigma^2}{\gamma^2} \sum_{i=1}^{d} (\beta_i)^2 / \sigma^2.$$

Choose β to minimize $\|\mathbf{y} - \mathbf{X}\beta\|_2^2 + \frac{\sigma^2}{\gamma^2} \|\beta\|_2^2$.

Completely different justification for ridge regularization!

Test your intuition: What modeling assumption justifies LASSO regularization: min $\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1$?