
CS-GY 6923: Lecture 5

Linear Classification, Logistic Regression,

Gradient Descent

NYU Tandon School of Engineering, Akbar Rafiey

1

-

Course news

• HW02 is posted. Due on March 05.

• Lab 03 due next week February 26.

2

Motivating problem

Breast Cancer Biopsy: Determine if a breast lump in a patient is

malignant (cancerous) or benign (safe).

• Collect cells from lump using fine needle biopsy.

• Stain and examine cells under microscope.

• Based on certain characteristics (shape, size, cohesion)

determine if likely malignant or not).

3

Motivating problem

Demo: demo breast cancer.ipynb

Data: UCI machine learning repository

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+

(original)

Features: 9 numerical scores about cell characteristics (Clump

Thickness, Uniformity, Marginal Adhesion, etc.)
4

Motivating problem

Data: (x1, y1), . . . , (xn, yn).

xi = [1, 5, 4 . . . , 2] contains score values.

Label yi 2 {0, 1} is 0 if benign cells, 1 if malignant cells.

Goal: Based on scores predict if a sample of cells is malignant or

benign.

Approach:

• Naive Bayes Classifier can be extended to x with numerical

values (instead of binary values as seen before).

What are other classification algorithms people have heard of?

5

k-nearest neighbor method

k-NN algorithm: a simple but powerful baseline for classification.

Training data: (x1, y1), . . . , (xn, yn) where y1, . . . , yn 2 {1, . . . , q}.

Classification algorithm:

Given new input xnew ,

• Compute sim(xnew , x1), . . . , sim(xnew , xn).1

• Let xj1 , . . . , xjk be the training data vectors with highest

similarity to xnew .

• Predict ynew as majority(yj1 , . . . , yjk).

1sim(xnew , xi) is any chosen similarity function, like 1� kxnew � xik2.

6

k= S

2 - 1

3 - 0

k-nearest neighbor method

Data 1-NN classifier

• Smaller k , more complex classification function.

• Larger k , more robust to noisy labels.

7

·Xnew

·

Xnew

k-nearest neighbor method

Data 5-NN classifier

• Smaller k , more complex classification function.

• Larger k , more robust to noisy labels.

• Works remarkably well for many datasets.

8

·

Xnew

↳
green

MNIST image data

Especially good for large datasets with lots of repetition.

Example: works well on MNIST (⇡ 95% accuracy out-of-the-box.):

Can be improved to 99.5% with a fancy similarity function!2

One issue is that prediction can be computationally intensive...
2We will revisit this when we talk about kernel methods.

9

II Xnew-Xil/2
(= 3

Linear classification

9

Begin by plotting data

We pick two variables, Margin Adhesion and Size Uniformity and

plot a scatter plot. Points with label 1 (malignant) are plotted in

blue, those with label 2 (benign) are plotted in green.

Lots of overlapping points! Hard to get a sense of the data. 10

Plotting with jitter

Simple + Useful Trick: data jittering. Add tiny random noise

(using e.g. np.random.randn) to data to prevent overlap.

Noise is only for plotting. It is not added to the data for training,

testing, etc. 11

Brainstorming

Any ideas for possible classification rules for this data?

12

X

Linear classifier

Given vector of predictors xi 2 Rd (here d = 2) find a parameter

vector � 2 Rd and threshold �.

• Predict yi = 0 if hxi ,�i  �.

• Predict yi = 1 if hxi ,�i > �

Line has equation hx,�i = �. 13

·
ca ,b) =

Iall .
IlbII .

cos(8

·
Y new

a
·knew

Linear classifier

As long as we append a 1 onto each data vector xi (i.e. a column

of ones onto the data matrix X) like we did for linear regression, an

equivalent function is:

• Predict yi = 0 if hxi ,�i  0.

• Predict yi = 1 if hxi ,�i > 0

Line has equation hx,�i = 0. 14

[IX , X 2]
[Bo B , B2]

⑬BX + Bex

Xi
&
->

Ynew-[li**

↳new

Linear classification

Standard approach for binary classification of real-valued data:
• Find parameter vector �.

• For input data vector x, predict 0 if �Tx  � and 1 if

�Tx > � for some threshold �.3

3Can always assume � = 0 if x has an intercept term. 15

0 - 1 loss

Question: How do we find a good linear classifier automatically?

Loss minimization approach (first attempt):

• Model4:

f�(x) = 1 [hx,�i > 0]

• Loss function: “0� 1 Loss”

L(�) =
nX

i=1

|f�(xi)� yi |

41[event] is the indicator function: it evaluates to 1 if the argument inside is

true, 0 if false.

16

0� 1 loss

Problem with 0� 1 loss:

• The loss function L(�) is not di↵erentiable because f�(x) is

discontinuous.

• Impossible to take the gradient, very hard to minimize loss to

find optimal �.

• Non-convex function (will make more sense next lecture).
17

-

-

Linear classifier via square loss

Loss minimization approach (second attempt):

• Model:

f�(x) = 1 [hx,�i > 1/2]

• Loss function: “Square Loss”

L(�) =
nX

i=1

(hx,�i � yi)
2

Intuitively tries to make hx,�i close to 0 for examples in class 0,

close to 1 for examples in class 1.

18

-
in

,

Linear classifier via square loss

We can solve for � by just solving a least squares multiple linear

regression problem.

Do you see any issues here?

19

I
Bas
X

to
tra

X

↓

BS

Linear classifier via square loss

Problem with square loss:

• Loss increases if hx,�i > 1 even if correct label is 1. Or if

hx,�i < 0 even if correct label is 0.

• Intuitively we don’t want to “punish” these cases.

20

Logistic regression

Let h�(x) be the logistic function:

h�(x) =
1

1 + e�h�,xi

21

if < B ,X] = 0

if <X , BD- -↑ -i*h(x) =For------
---------- -

if < B , X) -> +9
= D

=hp(x
=

Logistic regression

Loss minimization approach (this works!):

• Model: Let h�(x) =
1

1+e�h�,xi

f�(x) = 1 [h�(x) > 1/2]

= 1 [hx,�i > 0]

• Loss function: “Logistic loss” aka “binary cross-entropy loss”

L(�) = �
nX

i=1

yi log(h�(x)) + (1� yi) log(1� h�(x))

22

in
ify :

= / t

Logistic loss

Logistic Loss:

L(�) = �
Pn

i=1 yi log(h�(x)) + (1� yi) log(1� h�(x))

23

-

↳ T

Logistic loss

Logistic Loss:

L(�) = �
Pn

i=1 yi log(h�(x)) + (1� yi) log(1� h�(x))

24

-

Im- 0

Logistic regression

Loss minimization approach:

• Given training data (x1, y1), . . . , (xn, yn) where xi 2 Rd and

yi 2 {0, 1}.
• Minimize “Logistic loss” aka “binary cross-entropy loss”

L(�) = �
nX

i=1

yi log(h(�
Txi)) + (1� yi) log(1� h(�Txi))

• Above h(z) is the logistic/sigmoid function: h(z) = 1
1+e�z

Prediction: Predict yi = 1 if �Txi � 0, predict 0 otherwise.

25

Logistic regression

Let h(z) be the logistic/sigmoid function: h(z) = 1
1+e�z

Can think of this function as mapping xT� to a probability that

the true label is 1. If xT� � 0 then the probability is close to 1, if

xT� ⌧ 0 then the probability is close to 0.

26

Exercise

Why not minimize:

L(�) =
nX

i=1

⇣
yi � h(xT�)

⌘2
?

27

Exercise

Why not minimize:

L(�) =
nX

i=1

⇣
yi � h(xT�)

⌘2
?

Answer: This is actually a pretty reasonable thing to do. An

important issue however is that the loss here is not convex, which

makes it hard to find the � that minimizes the loss.

Log-loss on the other hand is convex. More on this later.

28

Logistic loss

• Convex function in �, can be minimized using gradient

descent.

• Works well in practice.

• Good Bayesian motivation.

• Easily combined with non-linear data transformations.

Fit using logistic regression/log loss. 29

Non-linear transformations

How would we learn a classifier for this data using logisitic

regression?

This data is not linearly separable or even approximately linearly

separable.

30

O

Non-linear transformations

Transform each x = [x1, x2] to x = [1, x1, x2, x21 , x
2
2 , x1x2]

• Predict class 1 if x21 + x22 < �.

• Predict class 0 if x21 + x22 � �.

This is a linear classifier on our transformed data set. Logisitic

regression might learn � = [r2, 0, 0, 1, 1, 0].
31

Tr
B = [v2, 0 ,

0 , 1 ,
1

,0)

X
,

2

+
xc =

r2
XB =
v

+ xi +xz

XI

-

Non-linear transformations

View as mapping data to a higher dimensional space, where it is

linearly separable.

Lots more on this in future lecture!

32

↓

Error in classification

Once we have a classification algorithm, how do we judge its

performance?

• Simplest answer: Error rate = fraction of data examples

misclassified in test set.

• What are some issues with this approach?

Think back to motivating problem of breast cancer detection.

33

Error in classification

• Precision: Fraction of

positively labeled examples

(label 1) which are correct.

• Recall: Fraction of true

positives that we labeled

correctly with label 1.

Question: Which should we

optimize for medical diagnosis?

34

Error in classification

Possible logistic regression workflow:

• Learn ~� and compute h~�(~xi) =
1

1+e�h~xi ,~�i
for all ~xi .

• Predict yi = 0 if h~�(~xi)  �, yi = 1 if h~�(~xi) > �.

• Default value of � is 1/2. How does changing � a↵ect

precision and recall ?

35

·
↳

Error in classification

Possible logistic regression workflow:

• Learn ~� and compute h~�(~xi) =
1

1+e�h~xi ,~�i
for all ~xi .

• Predict yi = 0 if h~�(~xi)  �, yi = 1 if h~�(~xi) > �.

• Default value of � is 1/2. How does changing � a↵ect

precision and recall ?

This is very heuristic. There are other methods for handling “class

imbalance” which can often lead to good overall error, but poor

precision or recall. Techniques include weighting the loss function

to care more about false negatives, or subsampling the larger class.

36

Multi-class

What about when y 2 {1, . . . , q} instead of y 2 {0, 1} ?

Two common options for reducing multi-class problems to

binary problems:

• One-vs.-all (most common, also called one-vs.-rest)

• One-vs.-one (slower, but can be more e↵ective)

37

One vs. rest

• For q classes train q classifiers. Obtain parameters �(1), . . . ,�(q).

• Assign y to class i if h�(i), xnew i � 0. Could be ambiguous!

• Better: Assign y to class i with maximum value of h(h�(i), xnew i).
38

pl
*(2)

⑲

One vs. one

• For q classes train q(q�1)
2 classifiers.

• Assign y to class i which wins in the most number of head-to-head

comparisons.

39

B
&0

. p(s

One vs. one

Hard case for one-vs.-all.

• One-vs.-one would be a better choice here.

• Also tends to work better when there is class imbalance.

• But one-vs.-one can be super expensive! E.g when q = 100 or

q = 1000.

40

·

Multiclass logistic regression

More common modern alternative: If we have q classes, train a

single model with q parameter vectors �(1), . . . ,�(q), and predict

class i = argmaxi h�(i), xi.

Same idea as one-vs.-rest, but we treat [�(1), . . . ,�(q)] as a single

length qd parameter vector which we optimize to minimize a single

joint loss function. We do not train the parameter vectors

separately.

What’s a good loss function?

41

Multiclass logistic regression

Softmax function:

2

64
h�(1), xi

...

h�(q), xi

3

75 softmax����!

2

664

eh�
(1),xi/

Pq
i=1 e

h�(i),xi

...

eh�
(q),xi/

Pq
i=1 e

h�(i),xi

3

775

Softmax takes in a vector of numbers and converts it to a vector of

probabilities:
h
�10 4 1 0 �5

i
!

h
.00 .94 .04 .02 .00

i

42

20

20

=I

=
-

Yere "ze'+e +e-S)
=> 0 .94

Multiclass logistic regression

Multi-class cross-entropy:

L(�(1), . . . ,�(q)) = �
X

i :yi=1

log
eh�

(1),xi i
Pq

j=1 e
h�(j),xi i

� . . .�
X

i :yi=q

log
eh�

(q ,xi i
Pq

j=1 e
h�(j),xi i

= �
nX

i=1

qX

`=1

1[yi = `] · log eh�
(`),xi i

Pq
j=1 e

h�(j),xi i

Binary cross-entropy:

L(�) = �
nX

i=1

yi log(h(�
Txi)) + (1� yi) log(1� h(�Txi))

= �
X

i :yi=1

log(h(�Txi))�
X

i :yi=0

log(1� h(�Txi))

Not exactly the same... but can show equivalent if you set

�(0) = � and �(1) = ��.
43

m

o or 1

Error in (multiclass) classification

Confusion matrix for k classes:

• Entry i , j is the fraction of class i items classified as class j .

• Useful to see whole matrix to visualize where errors occur.

44

10.5 8

1 0:99

1

I

Optimization

44

Logistic regression

Goal: Minimize the logistic loss:

L(�) = �
nX

i=1

yi log(h(�
Txi)) + (1� yi) log(1� h(�Txi))

I.e. find �⇤ = argmin L(�). How should we do this?

45

Logistic regression gradient

L(�) = �
nX

i=1

yi log(h(�
Txi)) + (1� yi) log(1� h(�Txi))

Let X 2 Rd⇥n be our data matrix with x1, . . . , xn 2 Rd as rows.

Let y = [y1, . . . , yn]. A calculation gives (verify!):

rL(�) = XT (h(X�)� y)

where h(X�) = 1
1+e�X� . Here all operations are entrywise. I.e in

Python you would compute:

46

-ent

Li ↳ nX/

k(z),-z

has

Logistic regression gradient

To find � minimizing L(�) we typically start by finding a � where:

rL(�) = XT (h(X�)� y) = 0

• In contrast to what we saw when minimizing the squared loss

for linear regression, there’s no simple closed form expression

for such a �!

• This is the typical situation when minimizing loss in machine

learning: linear regression was a lucky exception.

• Main question: How do we minimize a loss function L(�)

when we can’t explicitly compute where it’s gradient is 0?

47

X
T
(x(-y) =0 = xTXB= xy -> B = (xix)Ty

Minimizing loss functions

Always an option: Brute-force search. Test as many possible

values for � and just see which gives the smallest value of L(�).

• As we saw on Lab 1, this actually works okay for

low-dimensional problems (e.g. when � has 1 or 2 entries).

• Problem: Super computationally expensive in

high-dimension. For � 2 Rd , run time grows as:

48

L B
-

Bd

Minimizing loss functions

Much Better idea. Some sort of guided search for a good of �.

• Start with some �(0), and at each step try to change �

slightly to reduce L(�).

• Hopefully find an approximate minimizer for L(�) much more

quickly than brute-force search.

• Concrete goal: Find � with

L(�) < min
�

L(�) + ✏

for some small error term ✏.

49

Gradient descent

Gradient descent: A greedy search algorithm for minimizing

functions of multiple variables (including loss functions) that often

works amazingly well.

The single most important computational tool in machine learning.

And it’s remarkable simple + easy to implement.

50

Optimization algorithms

Just one method in a huge class of algorithms for numerical

optimization. All of these methods are important in ML.

51

