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Course news

• Homework 3 due next Wednesday (NO SLIP DAY)

• O!ce hours on Wednesday and Thursday

• Midterm next week, (most of) today’s lecture not included.
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Recap: first order optimization

First order oracle model: Given a function L to minimize (in our

case a loss function), assume we can:

• Function oracle: Evaluate L(ω) for any ω.

• Gradient oracle: Evaluate →L(ω) for any ω.
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Recap: gradient descent

(Basic) Gradient descent algorithm:

• Choose starting point ω(0).

• For i = 0, . . . ,T ↑ 1:

• ω(i+1) = ω(i)
↑ ω→L(ω(i))

• Return ω(T ).

ω > 0 is a step-size parameter; also called the learning rate.

Question: How to set ω ?
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Recap: directional derivatives

We have

lim
ω→0

L(ω ↑ ωv)↑ L(ω) ↓ ↑ω ·

(
εL

εϑ1
v1 +

εL

εϑ2
v2 + . . .+

εL

εϑd
vd

)

= ↑ω · ↔→L(ω), v↗.

If we set v = →L(ω), then we make progress.

How to set ω in practice?

• Too large, and the above claim doesn’t hold, so we don’t

make progress.

• Too small, and we converge slowly.

5

·

·

-



Convergence analysis for convex functions

Assume:

• L is convex.

• Lipschitz function: for all ω, ↘→L(ω)↘2 ≃ G .

• Starting radius: ↘ω↑
↑ ω(0)

↘2 ≃ R .

Gradient descent:

• Choose number of steps T .

• Starting point ω(0). E.g. ω(0) = 0.

• ω = R
G
↓
T

• For i = 0, . . . ,T ↑ 1:
• ω(i+1) = ω(i)

↑ ω→L(ω(i))

• Return ω̂ = argminω(i) L(ω).

This result tells us exactly how to set the learning rate ω for

convex functions. 6



Setting learning rate

But...

• We don’t usually know R or G in advance. We might not

even know T .

• Even if we did, setting ω = R
G
↓
T

tends to be a very

conservative in practice. The choice 100% leads to

convergence (for convex functions), but usually leads to a

fairly slow convergence.

• What if L is not convex?
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First approach: exponential grid search

Just as in regularization, search over a grid of possible parameters:

ω = [2↔5, 2↔4, 2↔3, . . . , 29, 210].

Can manually check if we are converging too slow or undershooting

by plotting the optimization curve.
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Learning rate: plotting curves

Plot’s of loss vs. number of iterations for three di”erence choices

of step size.
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Backtracking line search/Armijo rule

Recall: If we set ω(i+1)
⇐ ω(i)

↑ ω→L(ω(i)) then:

L(ω(i+1)) ↓ L(ω(i))↑ ω
〈
→L(ω(i)),→L(ω(i))

〉

= L(ω(i))↑ ω↘→L(ω(i))↘22.

• Approximation holds for small ω.

• If it holds, maybe we could get away with a larger ω.

• If it doesn’t, we should probably reduce ω.
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Backtracking line search/Armijo rule

Gradient descent with backtracking line search:

• Choose arbitrary starting point ω.

• Choose starting step size ω.

• Choose c < 1 (typically both c = 1/2)

• For i = 1, . . . ,T :

• ω(new) = ω ↑ ω→L(ω)
• If L(ω(new)) ≃ L(ω)↑ c · ω↘→L(ω)↘22

• ω → ω(new)

• ω → 2ω

• Else

• ω → ω/2

Always decreases objective value, works very well in practice.
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Backtracking line search/Armijo rule

Gradient descent with backtracking line search:

Always decreases objective value, works very well in practice. We

will see this in a lab.
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(The rest of the lecture in not included in the midterm.)
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Computationally e!cient descent
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Complexity of gradient descent

Complexity of computing the gradient will depend on your loss

function.

Example 1: Let X ⇒ Rn↗d be a data matrix.

L(ω) = ↘Xω ↑ y↘22 →L(ω) = 2XT (Xω ↑ y)

• Runtime of closed form solution ω↑ = (XTX)↔1XTy:

• Runtime of one GD step:
14
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Complexity of gradient descent

Complexity of computing the gradient will depend on you loss

function.

Example 1: Let X ⇒ Rn↗d be a data matrix.

L(ω) = ↑

n∑

i=1

yi log(h(ω
Txi )) + (1↑ yi ) log(1↑ h(ωTxi ))

→L(ω) = XT (h(Xω)↑ y)

• No closed form solution.

• Runtime of one GD step:
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Complexity of gradient descent

Frequently the complexity is O(nd) if you have n data-points and

d parameters in your model. This will also be the case for neural

networks.

Not bad, but the dependence on n can be a lot! n might be on the

order of thousands, or millions, or trillions.
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Stochastic Gradient Descent (SGD)

• Powerful randomized variant of gradient descent used to train

machine learning models when n is large and thus computing

a full gradient is expensive.

• Applies to any loss with finite sum structure:

L(ω) =
n∑

j=1

ϖ(ω, xj , yj)
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Stochastic gradient descent

• Let Lj(ω) denote ϖ(ω, xj , yj).

• Claim: If j ⇒ 1, . . . , n is chosen uniformly at random. Then:

E [n ·→Lj(ω)] = →L(ω).

• →Lj(ω) is called a stochastic gradient.
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Stochastic gradient descent

SGD iteration:

• Initialize ω(0).

• For i = 0, . . . ,T ↑ 1:

• Choose j uniformly at random from {1, 2, . . . , n}.

• Compute stochastic gradient g = →Lj(ω
(i)).

• Update ω(i+1) = ω(i)
↑ ω · ng

Move in direction of steepest descent in expectation.

Cost of computing g is independent of n!
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Complexity of stochastic gradient descent

Example: Let X ⇒ Rn↗d be a data matrix.

L(ω) = ↘Xω ↑ y↘22 =
n∑

j=1

(yj ↑ ωTxj)
2

• Runtime of one SGD step:
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Stochastic gradient descent

• Gradient descent: Fewer iterations to converge, higher cost

per iteration.

• Stochastic Gradient descent: More iterations to converge,

lower cost per iteration.
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Stochastic gradient descent

• Gradient descent: Fewer iterations to converge, higher cost

per iteration.

• Stochastic Gradient descent: More iterations to converge,

lower cost per iteration.
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Stochastic gradient descent in practice

Typical implementation: Shu”ed Gradient Descent.

Instead of choosing j independently at random for each iteration,

randomly permute (shu#e) data and set j = 1, . . . , n. After every

n iterations, reshu#e data and repeat.

• Relatively similar convergence behavior to standard SGD.

• Important term: one epoch denotes one pass over all

training examples: j = 1, . . . , n.

• Convergence rates for training ML models are often discussed

in terms of epochs instead of iterations.
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Stochastic gradient descent in practice

Practical Modification: Mini-batch Gradient Descent.

Observe that for any batch size s,

E
[
n

s

s∑

i=1

→Lji (ω)

]
= →L(ω).

if j1, . . . , js are chosen independently and uniformly at random

from 1, . . . , n.

Instead of computing a full stochastic gradient, compute the

average gradient of a small random set (a mini-batch) of training

data examples.

Question: Why might we want to do this?
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Mini-batch gradient descent

• Overall faster convergence (fewer iterations needed).
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Stochastic gradient descent in practice

Practical Mod. 2: Per-parameter adaptive learning rate.

Let g =




g1
...

gd



 be a stochastic or batch stochastic gradient. Our

typical parameter update looks like:

ω(t+1) = ω(t)
↑ ωg.

We’ve already seen a simple method for adaptively choosing the

learning rate/step size ω.
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Stochastic gradient descent in practice

Practical Mod. 2: Per-parameter adaptive learning rate.

In practice, ML lost functions can often be optimized much faster

by using “adaptive gradient methods” like Adagrad, Adadelta,

RMSProp, and ADAM. These methods make updates of the form:

ωt+1 = ωt ↑




ω1 · g1

...

ωd · gd





So we have a separate learning rate for each entry in the gradient

(e.g. parameter in the model); each ω1, . . . , ωd is chosen adaptively.
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Learning theory
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The fundamental curve of ML

Key Observation: Due to overfitting, more complex models do

not always lead to lower test error.

The more complex a model is, the more training data we need to

ensure that we do not overfit.
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Example: polynomial regression

If we want to learn a degree d polynomial model, we will perfectly

fit our training data if we have n ≃ d examples.

We need n > d samples to ensure good generalization.

How much more? 29
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Example: linear regression

If we want to fit a multivariate linear model with d features, we

will perfectly fit our training data if we have n ≃ d examples.

We need n > d samples to ensure good generalization.

How much more?
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Major goal in statistical learning theory

Formally characterize how much training data is required to ensure

good generalization (i.e., good test set performance) when fitting

models of varying complexity.
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Statistical learning model

Statistical Learning Model:

• Assume each data example is randomly drawn from some

distribution (x, y) ⇑ D.

For today: We will only consider classification problems so assume

that y ⇒ {0, 1}.
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Setup

Statistical Learning Model:

• Assume each data example is randomly drawn from some

distribution (x, y) ⇑ D.

• Assume we want to fit our data with a function h (a

“hypothesis”) in some hypothesis class H.

For input x, h(x) ⇓ {0, 1}.

You can think of h as a model, instantiated with a specific set of

parameters; i.e., h is the same as fε.
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Example hypothesis class

Linear threshold functions:

H contains all functions of the form:

h(x) = [xTω ⇔ ϱ]

.
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Example hypothesis class

Linear threshold functions:

H contains all functions of the form:

h(x) = [xTω ⇔ ϱ]

.
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Example hypothesis class

Axis aligned rectangles:

H contains all functions of the form:

h(x) = [l1 ≃ x1 ≃ u1 and l2 ≃ x2 ≃ u2]

36
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Example hypothesis class

Axis aligned rectangles:

H contains all functions of the form:

h(x) = [l1 ≃ x1 ≃ u1 and l2 ≃ x2 ≃ u2]
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Example hypothesis class

Disjunctive Normal Form (DNF) formulas:

Assume x ⇒ {0, 1}d is binary.

H contains functions of the form:

h(x) = (x1 ↖ x̄5 ↖ x10) ↙ (x̄3 ↖ x2) ↙ . . . ↙ (x̄1 ↖ x2 ↖ x10)

↖ = ”and”, ↙ = ”or”

k-DNF: Each conjunction has at most k variables.
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Population and empirical error

Same as “population risk” for the zero one loss:

• Population (“True”) Error:

Rpop(h) = Pr
(x,y)↘D

[h(x) ∝= y ]

• Empirical Error: Given a set of samples

(x1, y1), . . . , (xn, yn) ⇑ D,

Remp(h) =
1

n

n∑

i=1

[h(xi ) ∝= yi ]

Goal is to find h ⇒ H that minimizes population error.

39
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Generalization

Let (x1, y1), . . . , (xn, yn) ⇑ D be our training set and let htrain be

the empirical error minimizer1:

htrain = argmin
h

1

n

n∑

i=1

[h(xi ) ∝= yi ]

Let h↑ be the population error minimizer:

h
↑ = argmin

h
Rpop(h) = argmin

h
Pr

(x,y)↘D
[h(x) ∝= y ]

Goal: Ideally, for some small ς, Rpop(htrain)↑ Rpop(h↑) ≃ ς.

1Typically we do not actually compute htrain but rather some approximation

based on an easier loss to minimize, e.g. logistic loss.
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Simplification

Simplification for today: Assume we are in the realizable setting,

which means that Rpop(h↑) = 0. I.e. there is some hypothesis in

our class H that perfectly classifies the data.

Formally, for any (x, y) such that PrD[x, y ] > 0, h↑(x) = y .

Extending to the case when Rpop(h↑) ∝= 0 is not hard, but the

math gets a little trickier. And intuition is roughly the same.
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PAC learning

Probably Approximately Correct (PAC) Learning (Valiant,

1984):

For a hypothesis class H, data distribution D, and training data

(x1, y1), . . . , (xn, yn), let htrain = argminh
1
n

∑n
i=1 [h(xi ) ∝= yi ].

Question: In the realizable setting, how many training samples n

are required so that, with probability 1↑ φ,

Rpop(htrain) ≃ ς?

42
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PAC learning

Question: In the realizable setting, how many training samples n

are required so that, with probability 1↑ φ,

Rpop(htrain) ≃ ς?

Some intuitions:

• The number of samples n will depend on ς, φ;

• The number of samples n will depend on the complexity of

the hypothesis class H;

• Perhaps surprisingly, it will not depend at all on D.
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Complexity of hypothesis class

Question: How to measure complexity of a hypothesis class ?

• Many ways to measure complexity of a hypothesis class.

• Today we will start with the simplest measure: the number of

hypotheses in the class, |H|.

Example: What is the number of hypothesis in the class of 3-DNF

formulas on d dimensional inputs x = [x1, . . . , xd ] ⇒ {0, 1}d?

h(x) = (x1 ↖ x̄5 ↖ x10) ↙ (x̄3 ↖ x2) ↙ . . . ↙ (x̄1 ↖ x2 ↖ x10)

44
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Complexity of hypothesis class

Caveat: Many hypothesis classes are infinitely sized. E.g. the set

of linear thresholds

h(x) = [xTω ⇔ ϱ]

• We could imagine approximating H by a finite hypothesis

class.

• E.g. take values in ω,ϱ to lie on a finite grid of size C . Then

how many hypothesis are there?

Formally moving from finite to infinite sized hypothesis classes is a

huge area of learning theory (VC theory, Rademacher complexity,

etc.)

45B
..., Bl He t



Main result

Consider the realizable setting with hypothesis class H, data

distribution D, training data set (x1, y1), . . . , (xn, yn), and

htrain = argminh
1
n

∑n
i=1 [h(xi ) ∝= yi ].

Theorem

If n ⇔
1
ϑ

(
log |H|+ log 1

ϖ


, then with probability 1↑ φ,

Rpop(htrain) ≃ ς.

Roughly how many training samples are needed to learn 3-DNF

formulas? To learn (discretized) linear threshold funtions?
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Tools

Two ingredients needed for proof:

1. For any ς ⇒ [0, 1], (1↑ ς) ≃ e
↔ϑ.

2. Union bound. Basic but important inequality about

probabilities.
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Algebraic fact

For any ς ⇒ [0, 1], (1↑ ς) ≃ e
↔ϑ.

Raising both sides to 1/ς, we have the (1↑ ς)1/ϑ ≃ 1
e ↓ .37.

The specific constant here won’t be imporatnt.

48
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Union bound

Lemma (Union Bound)

For any random events A1, . . . ,Ak :

Pr[A1 or A2 or . . . or Ak ] ≃ Pr[A1] + Pr[A2] + . . .+ Pr[Ak ].

Proof by picture.

Sometimes written as Pr[A1 ′ A2 ′ . . . ′ Ak ]. 49



Union bound

Union bound is not tight: What is the probability that a dice roll

is odd, or that it is ≃ 2?

Union bound is tight: What is the probability that a dice roll is

1, or that it is ⇔ 4?
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Main result

Consider the realizable setting with hypothesis class H, data

distribution D, training data (x1, y1), . . . , (xn, yn), and

htrain = argminh
1
n

∑n
i=1 [h(xi ) ∝= yi ].

Theorem

If n ⇔
1
ϑ

(
log |H|+ log 1

ϖ


, then with probability 1↑ φ,

Rpop(htrain) ≃ ς.
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Proof

First observation: Note that because we are in the realizable

setting, we always select an htrain with Rtrain(htrain) = 0. There is

always at least one h ⇒ H such that h(xi ) = yi for all i .
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Proof

Proof approach: Show that for any fixed hypothesis hbad with

Rpop(hbad) > ς, it is very unlikely that Rtrain(hbad) = 0. So with

high probability, we will not choose a bad hypothesis.
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Proof

Let hbad be a fixed hypothesis with Rpop(h) > ς. For (x, y) drawn

from D, what is the probability that hbad(x) = y?

• at most (1↑ ς).

What is the probability that for a training set (x1, y1), . . . , (xn, yn)

drawn from D that hbad(xi ) = yi for all i? I.e. that

Rtrain(hbad) = 0.

• at most (1↑ ς)n.
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Proof

Claim

For any fixed hypothesis h
bad

with Rpop(hbad) > ς, the

probability that Rtrain(h) = 0 can be bounded by:

Pr[Rtrain(h
bad) = 0] < e

↔ϑn.

Set n ⇔
1
ϑ log(|H|/φ).

Then we have that for any fixed hypothesis hbad with

Rpop(hbad) > ς,

Pr[Rtrain(h
bad) = 0] <

φ

|H|
.
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Union bound application

Let hbad1 , . . . , hbadm be all hypthesis in H with Rpop(h) > ς.

Pr[Rtrain(h
bad
1 ) = 0 or . . . or Rtrain(h

bad
m ) = 0]

≃ Pr[Rtrain(h
bad
1 ) = 0] + . . .+ Pr[Rtrain(h

bad
m ) = 0]

< m ·
φ

|H|

How large can m be? Certainly no more than |H|!

So with probability 1↑ φ (high probability) no bad hypotheses have

0 training error. Accordingly, it must be that when we choose a

hypothesis with 0 training error, we are choosing a good one. I.e.

one with Rpop(h) ≃ ς.
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Things we didn’t cover

• How to deal with the non-realizable setting? E.g. where

minh Rpop ∝= 0?

• How to deal with infinite hypothesis classes (most classes in

ML are)?

• How to find htrain = argminh
1
n

∑n
i=1 [h(xi ) ∝= yi ] in a

computationally e!cient way?
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Take away

Important take-away as we start working with neural

networks and other more complex models:

• We expect the amount of training data required to learn a

model to scale logarithmically with the size of the model class

being fit, |H|.

• Typically, the size of H grows exponentially with the number

of parameters in the model.

• So overall, our training data size should exceed the number of

model parameters.

I.e., our experience from polynomial regression and linear

regression is somewhat universal.

58



Infinite hypothesis classes

Ideally we would like to give formal results for infinite hypothesis

classes (e.g., any class with real valued parameters) without

resorting to discretization. One of the most important tools for

doing so is the Vapnik–Chervonenkis (VC) dimension.

Theorem

Let H be a hypothesis class with VC dimension V . If

n ⇔
2 log(1/ϑ)

ϑ

(
V + log 2

ϖ


, then with probability 1↑ φ,

Rpop(htrain) ≃ ς.
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Shattering

We say a hypothesis class H shatters a set of points

x1, . . . , xq ⇒ Rd if there is some hypothesis h ⇒ H that matches

any possible labeling of the data.

Example: Linear classifiers in d = 2 dimensions.
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VC dimension

Definition (VC dimension)

The VC dimension of a hypothesis class H over points in Rd is

the size of the largest point set that H shatters.

What is the VC dimension of the set of linear classifiers in d = 2

dimensions?

61
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VC dimension

Definition (VC dimension)

The VC dimension of a hypothesis class H over points in Rd is

the size of the largest point set that H shatters.

What about axis aligned rectangles?
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Other important topics

• Generalization of VC dimension to multi-class classification.

• Generalization to regression.

• Tighter bounds that take the distribution D into account

(e.g., via Rademacher complexity).

At the end of the day, the main value of these tools is to improve

our understanding of the complexity of di”erent modes/hypothesis

classes.

In practice, train/test split is still the major tool for determining if

we are overfitting and need more data.

63


