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Motivating problem

Breast Cancer Biopsy: Determine if a breast lump in a patient is

malignant (cancerous) or benign (safe).

• Collect cells from lump using fine needle biopsy.

• Stain and examine cells under microscope.

• Based on certain characteristics (shape, size, cohesion)

determine if likely malignant or not).
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Motivating problem

Demo: demo breast cancer.ipynb

Data: UCI machine learning repository

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+

(original)
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https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)


Logistic regression

• Loss function: “Logistic loss” aka “binary cross-entropy loss”

L(β) = −
n∑

i=1

yi log(hβ(x)) + (1− yi ) log(1− hβ(x))

• Do GD or SGD: ∇L(β) = XT (h(Xβ)− y)

• In this setting, all the data is collected on one central server.
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Motivating problem

Question: How should we learn β in this case?
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Federated (Decentralized) Learning

Some challenges with centralized settings

• Privacy concern: in many applications individuals do not trust

the central server. Individuals want to keep their raw data

local

• Computational concern: collecting all the data at one central

server and doing computation could be infeasible.
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Federated Learning

A decentralized learning paradigm where data remains local while

models are trained collaboratively.
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Sum decomposable loss functions

• Typical loss function in machine learning:

L(β) =
1

n

n∑
j=1

ℓ(β, xj , yj)

where X = {x1, ..., xn} are the training data point.

• In the FL setting the data points are distributed among

different clients i.e., each client has its own local data.
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The set up

The loss can be broken down to sum of the clients’ local losses.

L(β) =

1

n

∑
j∈P1

ℓ1(β, xj , yj) +
∑
j∈P2

ℓ2(β, xj , yj) + · · ·+
∑
j∈PK

ℓK (β, xj , yj)
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The set up

We assume there are K clients over which the data is partitioned,

with Pk the set of indexes of data points on client k, with

nk = |Pk |.

Objective: minβ L(β) =
∑K

k=1
nk
n Lk(β)

Lk(β) =
1
nk

∑
j∈Pk

Lk(β, xj , yj) is a user-specified loss function on

client k local training dataset.
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Algorithmic framework

Recall that Gradient Descent is a first order optimization method:

Given a function L to minimize, we need to have:

• Function oracle: Evaluate L(β) for any β

• Gradient oracle: Evaluate ∇L(β) for any β.

Idea: We can actually compute the full gradient ∇L(β) without

collecting clients raw data. How ?
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Basic FedGD algorithm
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Basic FedGD algorithm
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Basic FedGD algorithm

Server chooses a starting model β(0).

For i = 0, . . . ,T − 1:

• Server broadcast the current model β(i) to all clients

• All clients in parallel do:

Compute local gradient:

∇Lk(β
(i)) = nk

n

∑
j∈Pk

∇ℓk(β
(i), xj , yj)

Send ∇Lk(β
(i)) to server

• Server does the aggregation ∇L(β(i)) =
∑K

k=1∇Lk(β
(i))

• Server updates β(i+1) = β(i) − η∇L(β(i))

Return β(T ).
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Basic FedGD algorithm

Question: What are some drawbacks of the Basic FedGD

algorithm?
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Basic FedGD algorithm

Question: What are some drawbacks of the Basic FedGD

algorithm?

• Requires many communication rounds between the server and

clients

• What if some of the clients are not available (not

participating)

• Does not use much of clients’ computation power
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Reducing communication rounds

How can we reduce the number of communication rounds ?
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Reducing communication rounds

How can we reduce the number of communication rounds ?

Clients can take several local steps.
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Basic FedGD+

Server chooses a starting model β(0).

For i = 0, . . . , (T − 1)/τ :

• Server broadcast the current model β(i) to clients

• Clients in parallel do:

- w (0)
k = β(i)

- For j = 0, . . . , τ − 1:

Compute ∇Lk(w
(j)
k )

Local GD update w (j+1)
k = w (j)

k − η∇Lk(w
(j)
k )

- Send ???? to server

• Server updates ????

Return β(T ).
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Basic FedGD+

Server chooses a starting model β(0).

For i = 0, . . . , (T − 1)/τ :

• Server broadcast the current model β(i) to clients

• Clients in parallel do:

- w (0)
k = β(i)

- For j = 0, . . . , τ − 1:

Compute ∇Lk(w
(j)
k )

Local GD update w (j+1)
k = w (j)

k − η∇Lk(w
(j)
k )

- Send w (τ)
k to server

• Server updates β(i+1) =
∑K

k=1
nk
n w (τ)

k

Return β(T ).
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Reducing number of participating clients

How can we reduce the number of participating clients in each

round?
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Reducing number of participating clients

How can we reduce the number of participating clients in each

round?

(Unbiased) client sampling.
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FedAvg

Server chooses a starting model β(0).

For i = 0, . . . , (T − 1)/τ :

• Server broadcast the current model β(i) to random subset of
active clients

• Each sampled client in parallel do:

- w (0)
k = β(i)

- For j = 0, . . . , τ − 1:

Compute ∇Lk(w
(j)
k )

Local GD update w (j+1)
k = w (j)

k − η∇Lk(w
(j)
k )

- Send w (τ)
k to server

• Server updates β(i+1) =
∑K

k=1
nk
n w (τ)

k

Return β(T ).
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A few asides

• We can still prove convergence for convex functions. (Under

the same assumptions: bounded gradient norm, bounded

radius.)

• The updates the server receives at each round is equal, in

expectation, to the full update. (verify).

• We can use Stochastic Gradient Descent instead of GD

• Using linearity of expectation, we can prove unbiased

estimation of our algorithm
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Some privacy concerns

• In some settings the server is not trusted at all, an adversary

• Clients do not want their individual updates be given to the

server

• Adversarial attacks on gradients and models is a very active
research area

- Gradients or model parameters can leak sensitive information.

Question: How can we address these concerns ?
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Secure Aggregation

Enables clients to submit vector inputs, such that the server (an

aggregator) can only decipher the combined update, not individual

updates.
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Secure Aggregation

Practical implementations using Secure Multi-Party Computation

(MPC), Differential Privacy, Homomorphic Encryption, etc.
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FL without a central server

It is more difficult to analyze the convergence and behavior.

It requires privacy preserving communication over the entire graph.
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Further reading on FL

Foundations and Trends® in Machine Learning

Advances and Open Problems in
Federated Learning

Suggested Citation: Peter Kairouz, H. Brendan McMahan, et al. (2021), “Advances and
Open Problems in Federated Learning”, Foundations and Trends® in Machine Learning:
Vol. 14, No. 1–2, pp 1–210. DOI: 10.1561/2200000083.

Peter Kairouz
Google Research

Kairouz@google.com

H. Brendan McMahan
Google Research

et al.

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval. Boston — Delft

29



Advantages and challenges of FL

Advantages:

• Preserves data privacy by keeping data local.

• Enables collaborative training across multiple organizations or

devices.

• Reduces risks of centralized data breaches.

• Facilitates training on diverse, real-world data without data

sharing.

Challenges:

• Communication overhead between clients and server.

• Handling heterogeneous (non-iid) data distributions.

• Ensuring fairness across participants with varying data quality

or quantity.

• Potentially high computational demands on client sides.
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