
CS-GY 6923: Lecture 8

Federated Learning

NYU Tandon School of Engineering, Akbar Rafiey

1

Motivating problem

Breast Cancer Biopsy: Determine if a breast lump in a patient is

malignant (cancerous) or benign (safe).

• Collect cells from lump using fine needle biopsy.

• Stain and examine cells under microscope.

• Based on certain characteristics (shape, size, cohesion)

determine if likely malignant or not).

2

Motivating problem

Demo: demo breast cancer.ipynb

Data: UCI machine learning repository

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+

(original)

3

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)

Logistic regression

• Loss function: “Logistic loss” aka “binary cross-entropy loss”

L(β) = −
n∑

i=1

yi log(hβ(x)) + (1− yi) log(1− hβ(x))

• Do GD or SGD: ∇L(β) = XT (h(Xβ)− y)

• In this setting, all the data is collected on one central server.

4

Motivating problem

Question: How should we learn β in this case?

5

Federated (Decentralized) Learning

Some challenges with centralized settings

• Privacy concern: in many applications individuals do not trust

the central server. Individuals want to keep their raw data

local

• Computational concern: collecting all the data at one central

server and doing computation could be infeasible.

6

Federated Learning

A decentralized learning paradigm where data remains local while

models are trained collaboratively.

7

Sum decomposable loss functions

• Typical loss function in machine learning:

L(β) =
1

n

n∑
j=1

ℓ(β, xj , yj)

where X = {x1, ..., xn} are the training data point.

• In the FL setting the data points are distributed among

different clients i.e., each client has its own local data.

8

The set up

The loss can be broken down to sum of the clients’ local losses.

L(β) =

1

n

∑
j∈P1

ℓ1(β, xj , yj) +
∑
j∈P2

ℓ2(β, xj , yj) + · · ·+
∑
j∈PK

ℓK (β, xj , yj)

9

The set up

We assume there are K clients over which the data is partitioned,

with Pk the set of indexes of data points on client k, with

nk = |Pk |.

Objective: minβ L(β) =
∑K

k=1
nk
n Lk(β)

Lk(β) =
1
nk

∑
j∈Pk

Lk(β, xj , yj) is a user-specified loss function on

client k local training dataset.

10

Algorithmic framework

Recall that Gradient Descent is a first order optimization method:

Given a function L to minimize, we need to have:

• Function oracle: Evaluate L(β) for any β

• Gradient oracle: Evaluate ∇L(β) for any β.

Idea: We can actually compute the full gradient ∇L(β) without

collecting clients raw data. How ?

11

Basic FedGD algorithm

12

Basic FedGD algorithm

13

Basic FedGD algorithm

Server chooses a starting model β(0).

For i = 0, . . . ,T − 1:

• Server broadcast the current model β(i) to all clients

• All clients in parallel do:

Compute local gradient:

∇Lk(β
(i)) = nk

n

∑
j∈Pk

∇ℓk(β
(i), xj , yj)

Send ∇Lk(β
(i)) to server

• Server does the aggregation ∇L(β(i)) =
∑K

k=1∇Lk(β
(i))

• Server updates β(i+1) = β(i) − η∇L(β(i))

Return β(T).

14

Basic FedGD algorithm

Question: What are some drawbacks of the Basic FedGD

algorithm?

15

Basic FedGD algorithm

Question: What are some drawbacks of the Basic FedGD

algorithm?

• Requires many communication rounds between the server and

clients

• What if some of the clients are not available (not

participating)

• Does not use much of clients’ computation power

16

Reducing communication rounds

How can we reduce the number of communication rounds ?

17

Reducing communication rounds

How can we reduce the number of communication rounds ?

Clients can take several local steps.

18

Basic FedGD+

Server chooses a starting model β(0).

For i = 0, . . . , (T − 1)/τ :

• Server broadcast the current model β(i) to clients

• Clients in parallel do:

- w (0)
k = β(i)

- For j = 0, . . . , τ − 1:

Compute ∇Lk(w
(j)
k)

Local GD update w (j+1)
k = w (j)

k − η∇Lk(w
(j)
k)

- Send ???? to server

• Server updates ????

Return β(T).

19

Basic FedGD+

Server chooses a starting model β(0).

For i = 0, . . . , (T − 1)/τ :

• Server broadcast the current model β(i) to clients

• Clients in parallel do:

- w (0)
k = β(i)

- For j = 0, . . . , τ − 1:

Compute ∇Lk(w
(j)
k)

Local GD update w (j+1)
k = w (j)

k − η∇Lk(w
(j)
k)

- Send w (τ)
k to server

• Server updates β(i+1) =
∑K

k=1
nk
n w (τ)

k

Return β(T).

20

Reducing number of participating clients

How can we reduce the number of participating clients in each

round?

21

Reducing number of participating clients

How can we reduce the number of participating clients in each

round?

(Unbiased) client sampling.

22

FedAvg

Server chooses a starting model β(0).

For i = 0, . . . , (T − 1)/τ :

• Server broadcast the current model β(i) to random subset of
active clients

• Each sampled client in parallel do:

- w (0)
k = β(i)

- For j = 0, . . . , τ − 1:

Compute ∇Lk(w
(j)
k)

Local GD update w (j+1)
k = w (j)

k − η∇Lk(w
(j)
k)

- Send w (τ)
k to server

• Server updates β(i+1) =
∑K

k=1
nk
n w (τ)

k

Return β(T).

23

A few asides

• We can still prove convergence for convex functions. (Under

the same assumptions: bounded gradient norm, bounded

radius.)

• The updates the server receives at each round is equal, in

expectation, to the full update. (verify).

• We can use Stochastic Gradient Descent instead of GD

• Using linearity of expectation, we can prove unbiased

estimation of our algorithm

24

Some privacy concerns

• In some settings the server is not trusted at all, an adversary

• Clients do not want their individual updates be given to the

server

• Adversarial attacks on gradients and models is a very active
research area

- Gradients or model parameters can leak sensitive information.

Question: How can we address these concerns ?

25

Secure Aggregation

Enables clients to submit vector inputs, such that the server (an

aggregator) can only decipher the combined update, not individual

updates.

26

Secure Aggregation

Practical implementations using Secure Multi-Party Computation

(MPC), Differential Privacy, Homomorphic Encryption, etc.

27

FL without a central server

It is more difficult to analyze the convergence and behavior.

It requires privacy preserving communication over the entire graph.

28

Further reading on FL

Foundations and Trends® in Machine Learning

Advances and Open Problems in
Federated Learning

Suggested Citation: Peter Kairouz, H. Brendan McMahan, et al. (2021), “Advances and
Open Problems in Federated Learning”, Foundations and Trends® in Machine Learning:
Vol. 14, No. 1–2, pp 1–210. DOI: 10.1561/2200000083.

Peter Kairouz
Google Research

Kairouz@google.com

H. Brendan McMahan
Google Research

et al.

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval. Boston — Delft

29

Advantages and challenges of FL

Advantages:

• Preserves data privacy by keeping data local.

• Enables collaborative training across multiple organizations or

devices.

• Reduces risks of centralized data breaches.

• Facilitates training on diverse, real-world data without data

sharing.

Challenges:

• Communication overhead between clients and server.

• Handling heterogeneous (non-iid) data distributions.

• Ensuring fairness across participants with varying data quality

or quantity.

• Potentially high computational demands on client sides.
30

