
CS-GY 6923: Lecture 13

PCA, Semantic Embeddings, Image

Generation

NYU Tandon School of Engineering, Akbar Rafiey

1

Autoencoder

Recap: Goal of autoencoder models is to map input data to a close

approximation of the original that takes less space to represent.

2

Principal Component Analysis

PCA is the “linear regression” of autoencoders:

• Simplest possible model. One layer, no non-linearities.

• X̃ = XW1W2 where X ∈ Rn×d ,W1 ∈ Rd×k ,W2 ∈ Rk×d .

• Want to minimize minW1,W2 ∥X− XW1W2∥2F .

3

Principal Component Analysis (PCA)

Given training data set x1, . . . , xn, let X denote our data matrix.

Let X̃ = XW1W2.

4

Low-rank approximation

• X̃ is a low-rank matrix. It only has rank (at most) k for k ≪ d .

• Finding best W1,W2 : equivalent to low-rank approximation. Can

be efficiently and provable optimized using the SVD.

5

Singular Value Decomposition

Any matrix X can be written:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0. I.e. U and V are

orthogonal matrices. Can be computed in O(nd2) time (faster with

approximation algos).

6

Partial Singular Value Decomposition

Can be computed in roughly O(ndk) time.

7

Singular value decomposition

Can read off optimal low-rank approximations from the SVD:

Eckart–Young–Mirsky Theorem: For any k ≤ d ,

Xk = UkΣkV
T
k is the optimal k rank approximation to X:

Xk = argmin
X̃ with rank ≤ k

∥X− X̃∥2F .

8

Singular value decomposition

Claim: Xk = UkΣkV
T
k = XVkV

T
k .

So for a model with k hidden variables, we obtain an optimal

autoencoder by setting W1 = Vk , W2 = VT
k . f (x) = xVkV

T
k .

9

Principal Component Analysis

Eckart–Young–Mirsky Theorem: X̃ = XVkV
T
k is the optimal

low-rank approximation to X. So W1 = Vk and W2 = VT
k are

optimal autoencoder parameters.

10

Principal Component Analysis (PCA)

Usually x’s columns (features) are mean centered and normalized

to variance 1 before computing principal components.
11

Singular value decomposition

Computing the SVD.

• Full SVD:

U,S,V = scipy.linalg.svd(X).

Runs in O(nd2) time.

• Just the top k components:

U,S,V = scipy.sparse.linalg.svds(X, k).

Runs in roughly O(ndk) time.

12

Connection to eigen-decomposition

Recall that for a matrix M ∈ Rp×p, q is an eigenvector of M if

λq = Mq for a scalar λ.

• U’s columns (the left singular vectors) are the orthonormal

eigenvectors of XXT .

• V’s columns (the right singular vectors) are the orthonormal

eigenvectors of XTX.

• σ2
i = λi (XX

T) = λi (X
TX)

Exercise: Verify this directly. This means you can use any

eigensolver for computing the SVD.

13

PCA applications

Like any autoencoder, PCA can be used for:

• Feature extraction

• Denoising and rectification

• Data generation

• Compression

• Visualization

14

Low-rank approximation

The larger we set k , the better approximation we get.

15

Low rank approximation

Error vs. k is dictated by X’s singular values. The singular values

are often called the spectrum of X.

∥X− Xk∥2F =
d∑

i=k+1

σ2
i .

16

Column redundancy

Colinearity of data features leads to an approximately low-rank

data matrix.

sale price ≈ 1.05 · list price.
property tax ≈ .01 · list price.

17

Column redundancy

Sometimes these relationships are simple, other times more

complex. But as long as there exists linear relationships between

features, we will have a lower rank matrix.

yard size ≈ lot size− 1

2
· square footage.

cumulative GPA ≈1

4
· year 1 GPA+

1

4
· year 2 GPA

+
1

4
· year 3 GPA+

1

4
· year 4 GPA.

18

Low-rank intuition

Two other examples of data with good low-rank approximations:

1. Genetic data:

2. “Term-document” matrix with bag-of-words data:

19

Examples of low-rank structure

SNPs matrices tend to be very low-rank.

Most of the information in x is explained by just a few latent

variable.

20

Examples of low-rank structure

“Genes Mirror Geography Within Europe” – Nature, 2008.

In data collected from European populations, latent variables

capture information about geography.

z[1] ≈ relative north-south position of birth place

z[2] ≈ relative east-west position of birth place

Individuals born in similar places tend to have similar genes.

21

PCA for data visualization

“Genes Mirror Geography Within Europe” – Nature, 2008.

Genetic data can be nicely visualized using PCA! Plot each data

example x using two loading variables in z. 22

Principal components

For more complex data, what do principal components and loading

vectors look like?

23

Principal components

MNIST principal components:

Principal components are a small set of vectors that can be

recombined to approximate rows in X̃.
24

Loading vectors

What do the loading vectors looks like?

The loading vector z for an example x contains coefficients which

recombine the top k principal components v1, . . . , vk to approximately

reconstruct x.

Provide a short “finger print” for any image x which can be used to

reconstruct that image.
25

Loading vectors: similarity view

For any x with loading vector z, zi is the inner product similarity

between x and the i th principal component vi .

26

Loading vectors: projection view

So we approximate x ≈ x̃ = ⟨x, v1⟩ · v1 + . . .+ ⟨x, vk⟩ · vk .

Since v1, . . . , vk are orthonormal, this operation is a projection

onto first k principal components.

I.e. we are projecting x onto the k-dimensional subspace spanned

by v1, . . . , vk .
27

Loading vectors: projection view

For an example xi , the loading vector zi contains the coordinates

in the projection space:

28

Similarity preservation

Important takeaway for data visualization and more: Latent

feature vectors preserve similarity and distance information in the

original data.

Let x1 . . . , xn ∈ Rd be our original data vectors, z1 . . . , zn ∈ Rk be

our loading vectors (encoding), and x̃1 . . . , x̃n ∈ Rd be our

low-rank approximated data.

We have:

∥x̃i∥22 = ∥zi∥22
⟨x̃i , x̃j⟩ = ⟨zi , zj⟩

∥x̃i − x̃j∥22 = ∥zi − zj∥22

29

PCA preserves geometry of input data

∥xi∥22 ≈ ∥zi∥22
⟨xi , xj⟩ ≈ ⟨zi , zj⟩

∥xi − xj∥22 ≈ ∥zi − zj∥22

30

Term document matrix

Word-document matrices tend to be low rank.

Documents tend to fall into a relatively small number of different

categories, which use similar sets of words:

• Financial news: markets, analysts, dow, rates, stocks

• US Politics: president, senate, pass, slams, twitter, media

• StackOverflow posts: python, help, convert, javascript

31

Latent semantic analysis

Latent semantic analysis = PCA applied to a word-document

matrix (usually from a large corpus). One of the most fundamental

techniques in natural language processing (NLP).

Each column of z corresponds to a latent “category” or “topic”.

Corresponding row in Y corresponds to the “frequency” with which

different words appear in documents on that topic.

32

Latent Semantic Analysis (LSA)

Word-document matrix:

For documents with a lot of shared words, ⟨xi , xj⟩ is a large

positive number. 33

Latent semantic analysis

Similar documents have similar LSA document vectors. I.e. ⟨zi , zj⟩
is large.

• zi provides a more compact “finger print” for documents than

the long bag-of-words vectors. Useful for e.g search engines.

• Comparing document vectors is often more effective than

comparing raw BOW features. Two documents can have

⟨zi , zj⟩ large even if they have no overlap in words. E.g.

because both share a lot of words with words with another

document k , or with a bunch of other documents.

34

Document embeddings

For similar documents, ⟨zi , zj⟩ should be large. I.e. zi and zj point

in the same direction.

35

From PCA to semantic embeddings

Simple but useful observation: The i , j entry of X̃ equals ⟨zi , yj⟩.

36

Word embeddings

• ⟨yi , za⟩ ≈ 1 when doca contains wordi .

• If wordi and wordj both appear in doca, then

⟨yi , za⟩ ≈ ⟨yj , za⟩ ≈ 1, so we expect ⟨yj , yj⟩ to be large.

If two words appear in the same document their, word vectors tend

to point more in the same direction.
37

Word embeddings

Result: Map words to numerical vectors in a semantically

meaningful way. Similar words map to similar vectors. Dissimilar

words to dissimilar vectors.

Extremely useful “side-effect” of LSA.

Capture e.g. the fact that “great” and “excellent” are near

synonyms. Or that “difficult” and “easy” are antonyms. 38

Word embeddings

For similar words, ⟨yi , yj⟩ should be large. I.e. yi and yj point in

the same direction.

39

Word embeddings: motivating problem

Review 1: Very small and handy for traveling or camping.

Excellent quality, operation, and appearance.

Review 2: So far this thing is great. Well designed, compact, and

easy to use. I’ll never use another can opener.

Review 3: Not entirely sure this was worth $20. Mom couldn’t

figure out how to use it and it’s fairly difficult to turn for someone

with arthritis.

Goal is to classify reviews as “positive” or “negative”.

40

Bag-of-words features

Vocabulary: Small, handy, excellent, great, quality, compact, easy,

difficult.

Review 1: Very small and handy for traveling or camping. Excellent

quality, operation, and appearance.

[, , , , , , ,]

Review 2: So far this thing is great. Well designed, compact, and easy

to use. I’ll never use another can opener.

[, , , , , , ,]

Review 3: Not entirely sure this was worth $20. Mom couldn’t figure

out how to use it and it’s fairly difficult to turn for someone with arthritis.

[, , , , , , ,]

41

Semantic embeddings

Bag-of-words approach typically only works for large data sets.

The features do not capture the fact that “great” and “excellent” are

near synonyms. Or that “difficult” and “easy” are antonyms.

This can be addressed by first mapping words to semantically meaningful

vectors. That mapping can be trained using a much large corpus of text

than the data set you are working with (e.g. Wikipedia, Twitter, news

data sets).

42

Using word embeddings

How to go from word embeddings to features for a whole sentence

or chunk of text?

43

Using word embeddings

A few simple options:

Feature vector x = 1
q

∑q
i=1 yq.

Feature vector x = [y1, y2, . . . , yq].

44

Using word embeddings

To avoid issues with inconsistent sentence length, word ordering,

etc., can concatenate a fixed number of top principal components

of the matrix of word vectors:

There are much more complicated approaches that account for

word position in a sentence. Lots of pretrained libraries available

(e.g. Facebook’s InferSent). 45

Word embeddings

Another view on word embeddings from LSA:

We chose Z to equal XVk = UkΣk and Y = VT
k .

Could have just as easily set Z = Uk and Y = ΣkV
T
k , so Z has

orthonormal columns.

46

Word embeddings

Another view on word embeddings from LSA:

• X ≈ ZY

• XTX ≈ YTZTZY = YTY

• So for wordi and wordj , ⟨yi , yj⟩ ≈ [XTX]i ,j .

What does the i , j entry of XTX reprent?

47

Word embeddings

What does the i , j entry of XTX represent?

The number of documents where words i and j were both used.

48

Word embeddings

⟨yi , yj⟩ is larger if wordi and wordj appear in more documents together

(high value in word-word co-occurrence matrix, XTX). Similarity of

word embeddings mirrors similarity of word context.

General word embedding recipe:

1. Choose similarity metric k(wordi ,wordj) which can be computed for

any pair of words.

2. Construct similarity matrix M ∈ Rn×n with Mi,j = k(wordi ,wordj).

3. Find low rank approximation M ≈ YTY where Y ∈ Rk×n.

4. Columns of Y are word embedding vectors.

We expect that ⟨yi , yj⟩ will be larger for more similar words.

49

Word embeddings

How do current state-of-the-art methods differ from LSA?

• Similarity based on co-occurrence in smaller chunks of words. E.g.

in sentences or in any consecutive sequences of 3, 4, or 10 words.

• Usually transformed in non-linear way. E.g.

k(wordi ,wordj) =
p(i,j)

p(i)p(j) where p(i , j) is the frequency both i , j

appeared together, and p(i), p(j) is the frequency either one

appeared.

50

Modern word embeddings

Computing word similarities for “window size” 4:

51

Modern word embeddings

Current state of the art models: GloVE, word2vec.

• word2vec was originally presented as a shallow neural network

model, but it is equivalent to matrix factorization method

(Levy, Goldberg 2014).

• For word2vec, similarity metric is the “point-wise mutual

information”: log p(i ,j)
p(i)p(j) .

52

Caveat about factorization

SVD will not return a symmetric factorization in general. In fact, if

M is not positive semidefinite1 then the optimal low-rank

approximation does not have this form.

1I.e., k(wordi ,wordj) is not a positive semidefinite kernel.

53

Caveat about factorization

• For each word i we get a left and right embedding vector wi

and yi . It’s reasonable to just use one or the other.

• If ⟨yi , yj⟩ is large and positive, we expect that yi and yj have

similar similarity scores with other words, so they typically are

still related words.

• Another option is to use as your features for a word the

concatenation [wi , yi]

54

Easiest way to use word embeddings

Lots of pre-trained word vectors are available online:

• Original gloVe website:

https://nlp.stanford.edu/projects/glove/.

• Compilation of many sources:

https://github.com/3Top/word2vec-api

55

https://nlp.stanford.edu/projects/glove/
https://github.com/3Top/word2vec-api

Semantic embeddings

The same approach used for word embeddings can be used to

obtain meaningful numerical features for any other data where

there is a natural notion of similarity.

For example, the items could be nodes in a social network graph.

Maybe be want to predict an individuals age, level of interest in a

particular topic, political leaning, etc.

56

Node embeddings

Generate random walks (e.g. “sentences” of nodes) and measure

similarity by node co-occurence frequency.

57

Node embeddings

Again typically normalized and apply a non-linearity (e.g. log) as in

word embeddings.

Popular implementations: DeepWalk, Node2Vec. Again initially

derived as simple neural network models, but are equivalent to

matrix-factorization (Qiu et al. 2018).

58

Bimodal embeddings

We can also create embeddings that represent different types of

data. OpenAI’s clip architecture:

Goal: Train embedding architectures so that ⟨Ti , Ij⟩ are similar if

image and sentence are similar. 59

Clip training

What do we use as ground truth similarities during training?

Sample a batch of sentence/image pairs and just use identity

matrix.

This is called contrastive learning. Train unmatched text/image

pairs to have nearly orthogonal embedding vectors.
60

Clip for zero-shot learning

2021 result: 76% accuracy on ImageNet image classification

challenge with no labeled training data.

61

Image Synthesis

61

Autoencoders learn compressed representations

f (x) = d(e(x)) projects an image x closer to the space of natural

images.

62

Autoencoders for data generation

Suppose we want to generate a random natural image. How might

we do that?

• Option 1: Draw each pixel value in x uniformly at random.

Draws a random image from A.

• Option 2: Draw x randomly from S, the space of images

representable by the autoencoder.

How do we randomly select an image from S?

63

Autoencoders for data generation

Autoencoder approach to generative ML: Feed random inputs

into decode to produce random realistic outputs.

Main issue: most random inputs words will “miss” and produce

garbage results.

64

Autoencoders for data generation

Variational auto-encoders attempt to resolve this issue.

65

Variational autoencoders

Variational auto-encoders attempt to resolve this issue. Basic

ideas:

• Add noise during training.

• Add penalty term so that distribution of code vectors

generated looks like mean 0, variance 1 Gaussian.

66

Generative Adversarial Networks

Variation AE’s give very good results, but tends to produce images

with immediately recognizable flaws (e.g. soft edges,

high-frequency artifacts).

67

Generative Adversarial Networks (GANs)

Lots of efforts to hand-design regularizers that penalize images

that don’t look realisitic to the human eye.

Main idea behind GANs: Use machine learning to automatically

encourage realistic looking images.

min
θ

L(θ) + P(θ)

68

Generative Adversarial Networks (GANs)

Let x1, . . . , xn be real images and let z1, . . . , zm be random code vectors.

The goal of the discriminator is to output a number between [0, 1] which

is close to 0 if the image is fake, close to 1 if it’s real.

Train weights of discriminator Dθ to minimize:

min
θ

n∑
i=1

− log (Dθ(xi)) +
m∑
i=1

− log (1− Dθ(Gθ′(zi))
69

Generative Adversarial Networks (GANs)

Goal of the generator Gθ′ is the opposite. We want to maximize:

max
θ′

m∑
i=1

− log (1− Dθ(Gθ′(zi))

This is called an “adversarial loss function”. D is playing the role of the

adversary.

70

Generative Adversarial Networks (GANs)

θ∗,θ′∗ solve min
θ

max
θ′

n∑
i=1

− log (Dθ(xi)) +
m∑
i=1

− log (1− Dθ(Gθ′(zi))

This is called a minimax optimization problem. Really tricky to

solve in practice.

• Repeatedly play: Fix one of θ∗ or θ′∗, train the other to

convergence, repeat.

• Simultaneous gradient descent: Run a single gradient

descent step for each of θ∗,θ′∗ and update D and G

accordingly. Difficult to balance learning rates.

• Lots of tricks (e.g. slight different loss functions) can help.

71

Generative Adversarial Networks (GANs)

State of the art until a few years ago.

72

Diffusion

Auto-encoder/GAN approach: Input noise, map directly to

image.

Diffusion: Slowly move from noise to image.

73

How diffusion models work

• Forward Process:
• Gradually add noise to data until it becomes pure noise.

• Reverse Process:
• Train a neural network to remove the noise step by step.

Key Question: How do we predict and reverse noise effectively?
74

Mathematical Formulation (1/2)

Forward Process (Adding Noise):

q(xt |xt−1) = N (xt ;
√
1− βtxt−1, βtI)

• βt : Noise schedule.

• After T steps, for large enough T , xT is pure noise.

Cumulative Noise:

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I)

with retention factor αt =
∏t

s=1(1− βs).

75

Mathematical formulation (2/2)

Reverse Process (Denoising):

pθ(xt−1|xt) = N (xt−1;µθ(xt , t),Σθ(xt , t))

• µθ: Predicted mean of the clean image.

• Σθ: Predicted variance (optional).

Training objective:

Lsimple = Ex0,t,ϵ

[
∥ϵ− ϵθ(xt , t)∥2

]
76

Training process

Data Preparation:

• Use large datasets of images x0.

Noise Addition:

xt =
√
αtx0 +

√
1− αtϵ

Model Training:

• Train ϵθ(xt , t) to predict the noise.

Loss Function:

Lsimple = Ex0,t,ϵ

[
∥ϵ− ϵθ(xt , t)∥2

]
77

Image generation using diffusion

Sampling Process:

1. Start with pure noise xT .

2. Iteratively denoise using:

xt−1 = µθ(xt , t) +
√
Σθz , z ∼ N (0, I)

3. Final output: a clean image x0.

78

Semantic embeddings + diffusion

Text to image synthesis: Dall-E, Imagen, Stable Diffusion

“A chair that looks like a pineapple” 79

