CS-GY 6923: Lecture 14

Image Generation, and Privacy Concerns in
ML

NYU Tandon School of Engineering, Akbar Rafiey

Recap: Autoencoders learn compressed representations

Space of “natural”
images 7

f(x) = d(e(x)) projects an image x closer to the space of natural
images.

Autoencoders for data generation

Suppose we want to generate a random natural image. How might
we do that?

e Option 1: Draw each pixel value in x uniformly at random.
Draws a random image from A.

e Option 2: Draw x randomly from S, the space of images
representable by the autoencoder.

m

How do we randomly select an image from &7

Autoencoders for data generation

Autoencoder approach to generative ML: Feed random inputs
into decoder to produce random realistic outputs.

Ny o= (z)
n,=(1z)

Ny == 2)

'

Main issue: most random inputs will “miss” and produce garbage
results.

Autoencoders for data generation

Space of “natural”
images 7

Variational Auto-Encoders (VAEs) attempt to resolve this issue.

Variational AutoEncoders (VAEs)

VAEs attempt to resolve this issue. Basic ideas:

e Instead of mapping inputs to a single latent vector, VAEs map
them to a probability distribution in the latent space (e.g., a
Gaussian distribution)

Define
latent state
distributions

Mean Sample from
distributions

\
.
\
/Q‘)
(\ h
(4 N /
] N\ /
1 A

‘\vmance / \

Image from https://www.jeremyjordan.me/variational-autoencoders/

https://www.jeremyjordan.me/variational-autoencoders/

Variational AutoEncoders (VAEs)

Basic ideas:

e Suppose there exists some hidden variable z which generates
X.
e Ideally we want to understand p(z | x) (probabilistic encoder)

and p(x | z) (probabilistic decoder)
e We can only see the data. Computing p(z | x) is hard

p(x | 2)p(2)

p(z | x) = o(x)

Variational AutoEncoders (VAEs)

Basic ideas:

e Let's approximate p(z | x) using a simpler to understand
distribution g(z | x).

b

Latent space
representation.

Image from https://www.jeremyjordan.me/variational-autoencoders/

https://www.jeremyjordan.me/variational-autoencoders/

Variational AutoEncoders (VAEs)

Basic ideas:

e Let's approximate p(z | x) using a simpler to understand
distribution g(z | x).

e g(z | x) must have nice properties e.g., it should be as similar
as possible to p(z | x)

e Optimization problem !

Ftd

Latent space
representation.

Image from https://www.jeremyjordan.me/variational-autoencoders/

https://www.jeremyjordan.me/variational-autoencoders/

Kullback—Leibler divergence

KL divergence is a measure of difference between two probability
distributions.

Iog log(P(x))
ZP log Q(x)

Back to our optimization problem: g(z | x) and p(z | x) should be
similar

min KL(q(z | x), p(z | x))
Equivalent to:

maXEq(z\x) |Og(p(X ‘ Z)) - KL(q(Z | X),p(Z))

10

VAE objective

Back to our optimization problem: g(z | x) and p(z | x) should be

similar
min KL(q(z | x), p(z | x))
Equivalent to:
max E,(2|x) log(p(x | 2)) — KL(q(z | x), p(2))

What is the first term? what is the second term?

11

VAE objective

Back to our optimization problem: g(z | x) and p(z | x) should be
similar

min KL(q(z | x), p(z | x))
Equivalent to:
maXEq(z\x) |og(p(x ‘ Z)) - KL(q(Z | X),p(Z))

First term: reconstruction likelihood.

Second term: ensures that our learned distribution g is similar to

the true prior distribution p.

12

VAEs: implementation

Have neural networks to learn the mappings g(z | x) and p(x | 2).
max g (zlx) log(po(x | z)) — KL(q4(z | x), po(2))

Assumptions: qy(z | x), pg(x | z), and pg(z) are Gaussian
distributions.

u[xml | alzlx) X z b4
Q : Latent space
representation.
Neural network Neural network

We'd like to use our mapping x to z. mapping 2 to x.
observations to

understand the hidden

variable.

Image from https://www.jeremyjordan.me/variational-autoencoders/

13

https://www.jeremyjordan.me/variational-autoencoders/

VAEs: implementation

The encoder model of a VAE will output parameters describing a
distribution for each dimension in the latent space.

Assuming Gaussian we only need a mean and a variance for
describing each dimension in the latent space

Define
latent state
distributions

Mean Sample from

butions
/|

Image from https://www.jeremyjordan.me/variational-autoencoders/

14

https://www.jeremyjordan.me/variational-autoencoders/

VAEs: implementation

It is not easy to backpropagate the gradient through samples !

Reparameterization technique addresses this issue.

Define
latent state
distributions

Mean Sample from

\% Vi 40\‘”/
i Variance |/ \

1) [>
T T—

Image from https://www.jeremyjordan.me/variational-autoencoders/

ii5)

https://www.jeremyjordan.me/variational-autoencoders/

VAEs: reparameterization technique

z ~ qy4(- | x) is normally distributed, as
N (g(x), 05(x))

This can be reparameterized by letting ¢ ~ A(0, /), and
constructing z as

z = pg(x) + Ly(x)e
Here, 04(x) is obtained by the Cholesky decomposition:

9(x) = Lo(x)Ls(x)"

Then we have
L
9(2x) 9(116(x) + Lo(x)elx)
and so we obtain an unbiased estimator of the gradient, allowing

stochastic gradient descent.
16

VAEs: reparameterization technique

Since we reparameterized z, we need to find g,(z|x). Let gg be
the probability density function for ¢, then

In gg4(z|x) = Ingo(e) — In|det (J(z,¢))|
Since z = puy(x) + Ly(x)e, this becomes

1 n
In gg(z|x) = —§||5||2 —In|det Ly(x)| — 5 In(27)

17

VAEs: reparameterization technique

We can now optimize the parameters of the distribution (unbiased
estimation of the gradient) while still maintaining the ability to
randomly sample from that distribution.

decoder model decoder model

°~q(z\x) 0 z=p+oQ@cs

e TN
60 oS00
I I
encoder model encoder model

Image from https://www.jeremyjordan.me/variational-autoencoders/

18

https://www.jeremyjordan.me/variational-autoencoders/

Generative Adversarial Networks (GANs)

VAEs give very good results, but tends to produce images with
immediately recognizable flaws (e.g. soft edges, high-frequency
artifacts).

Ny o= (z)
n, == (2
Ny == 2)
£

y

19

Generative Adversarial Networks (GANs)

Lots of efforts to hand-design regularizers that penalize images

that don’t look realistic to the human eye.

Main idea behind GANs: Use machine learning to automatically
encourage realistic looking images.

mein L(0) + P(0)

20

Generative Adversarial Networks (GANs)

real-world

image generator

code vector

Let x1,...,X, be real images and let z;, ..., 2z, be random code vectors.
The goal of the discriminator is to output a number between [0, 1] which

is close to 0 if the image is fake, close to 1 if it's real.

Train weights of discriminator Dy to minimize:

mlnz log (Do (x —|—Z log (1 — De(Ger(2i))

i=1

21

Generative Adversarial Networks (GANs)

real-world

image generator

code vector

Goal of the generator Gy is the opposite. We want to maximize:
m
n}gx‘zl —log (1 — Dg(Ge(z;))
=

This is called an “adversarial loss function”. D is playing the role of the

adversary.
22

Generative Adversarial Networks (GANs)

n

6,6 solve mj —log (Do(x:) + 3. — log (1 — Do(Gy (2
solve memmea}xg og (Dg(x;)) ; og (o(Ge(2/))

This is called a minimax optimization problem. Really tricky to

solve in practice.

o Repeatedly play: Fix one of 8* or 8%, train the other to

convergence, repeat.

e Simultaneous gradient descent: Run a single gradient
descent step for each of 8*,0™ and update D and G
accordingly. Difficult to balance learning rates.

e Lots of tricks (e.g. slight different loss functions) can help.

23

Generative Adversarial Networks (GANs)

State of the art until a few years ago.

24

Quality of generative model

How to evaluate the quality of our model e.g., GAN? What do we
expect from it?

25

Quality of generative model

How to evaluate the quality of our model e.g., GAN? What do we
expect from it?

e The images generated by our model should have variety (e.g.,
each image is a different breed of dog)

e Each image distinctly looks like something (e.g., one image is
clearly a Poodle, the next a great example of a French
Bulldog)

26

The Inception Score (IS)

Each image distinctly looks like something (e.g., one image is
clearly a Poodle, the next a great example of a French Bulldog)

o | |

seyd |
wy ||
Boq

eydsjg | |

Jreyd
uy
ey | |
Boa |]

weydsg | |

27

The Inception Score (IS)

The images generated by our model should have variety:

Generate a lot of images (50,000) using the model and sum their
distributions.

Different labels sum to give uniform distribution

Similar labels sum to give focussed distribution

28

The Inception Score (IS)

Higher KL divergence, means better score.

o

Ideal label distribution Ideal marginal distribution

High KL divergence Medium KL divergence Low KL divergence Low KL divergence

mﬂ L] Wmm

Ideal situation

Generated images are Generated images are Generator lacks
not distinctly one not distinctly one diversity
label label

Image from
https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a

29

https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a

Diffusion Model

Diffusion

Auto-encoder/VAE, GAN approach: Input noise, map directly

to image and vice versa.

Diffusion: Slowly move from noise to image and vice versa.

Denoising Diffusion Probabilistic Models

Jonathan Ho Ajay Jain Pieter Abbeel
UC Berkeley UC Berkeley UC Berkeley
jonathanho@berkeley.edu ajayj@berkeley.edu pabbeel@cs.berkeley.edu

Abstract

‘We present high quality image synthesis results using diffusion probabilistic models,
a class of latent variable models inspired by considerations from nonequilibrium
thermodynamics. Our best results are obtained by training on a weighted variational
bound designed according to a novel connection between diffusion probabilistic

30

How diffusion models work

e Forward Process:

e Gradually add noise to data until it becomes pure noise.
e Reverse Process:

e Train a neural network to remove the noise step by step.

Forward Diffusion Process

1
2

P

Denoising UNet

Reverse Diffusion Process

Key Question: How do we predict and reverse noise effectively? -

Mathematical Formulation (1/2)

Forward Process (Adding Noise):
q(x¢[xt—1) = N(X¢; /1 = Bexe—1, Bil)

a(xe[x¢-1)
O @™ @ g

e ;. Noise schedule.

e After T steps, for large enough T, x7 is pure noise.
Cumulative Noise:
Xt = Varxo + V1 —are, €~ N(0,1)

with retention factor & = [[i_;(1 — Bs).

32

Mathematical formulation (2/2)

Reverse Process (Denoising):

p@(Xt_l‘Xt) - N(Xf—l; :ue(xi‘? t)v ZQ(XU t))

Zloxrl\x:)
@H ~@ - 8g H

(Xf\xr 1)

e (i9: Predicted mean of the clean image.

e >, Predicted variance (optional).

Training objective:
ﬁsimple = IExo,t,e [He (xt7)H }

33

Diffusion models vs VAEs

e Recall the goal of VAE was to have a probabilistic
representation of latent space attributes. This was done in
one shot, from image to Gaussian distributions.

o VAE decoder does the reverse in one shot. Takes Gaussian

noise and returns an image.

e Diffusion model doing more or less the same but with many
careful intermediate noising and denoising steps.

e There are fundamental differences ...

34

Diffusion process

A diffusion process is a stochastic Markov process having
continuous path

stochastic Markov process: future state will only depend on
the current state, knowing the past does not change anything

continuous: no jumps

Allows to transition from complex distributions to simple
distributions

85

Forward process: a closer look

Forward process: q(x¢|xt—1) = N(x¢; v'1 — Brx¢—1, Btl)
Why does it converge to a simple distribution ?
Suppose the process is x; = ax;—1 + BN(0, /).
What values of « and 3 makes sense for the process?
e 0=0,0=17
e a>1,8<1?
e Seems something like a = 1/0.99, 3 = 1/0.01 is appropriate.

36

Forward process: a closer look

Let's check if the following v and 8 converges:

Xy =].—th_]_—"\/BN(O,I)

x; = /1= Bxe_1 + /BN(0,1)
= /1= B(v/1 = Bxe—z + v/BN(0,1)) + /BN(0,1)
= (v/1 = B)*xe_2 + /1 — Bv/BN(0,1) + /BN(0, 1)

37

Forward process: a closer look

Let's check if the following v and 8 converges:

Xy = 1—th_1+\/BN(O,I)

x: = /1 — Bxe_1 + /BN(0,1)
1— B(v/1 = Bxe—2 + /BN(0, 1)) + /BN(0,1)
(\/1f 2%e_2 + /1= B\/BN(0, 1)+ /BN(0, 1)

= (V1= B)xe—e + -+ (v/1 = B)*V/BN(0,1) + /1 - B\/BN(0,1)
+/BN(0, 1)

38

Forward process: a closer look

xe = (V1= B)xo + -+ (v/1— B)2VBN(0,1) + /1 — BV/BN(0,1)
+ v/BN(0,1)

e for large t, (/1 —)" approaches to 0

e each of (/I — B)'v/BN(0,1) is a Gaussian with mean 0 and
variance (1 — 8)'8.

o All these Gaussian can be written as one Gaussian distribution
with variance:

t (1-pF B _,

ig __ 1-
;(1—6)6—51_(1 5~ 5

For large enough t we converge to the Normal distribution A/(0, /).

39

Forward process: a closer look

In practice we do not use a fixed noise 3

Linear schedule noise: $; = 0.0001 and S+ = 0.02

The number of steps is about 10000 (application dependent),
but this is slow!

Recall x; = /1 — Bxt—1 + VBN (0, /).

Let's define ay = 1 — B; and do the recursive expansion.

40

Forward process: a closer look

x: = /1 — Bexe—1 + /BeN(0, 1)
= oeXe_1 + MN(07 I
= Var(vVa_1xe—2 + /1 — ar_1N(0,1)) + V1 — a:N (0, 1)
= (Varar—1)xi—2 + \/1 — o+ oy — oo \/BN(O, I

41

Forward process: a closer look

xt = /1 — Bexe_1 + /BN (0, 1)
= arxi—1 + V1 — aN(0,1)
= or(y/@—1xe—2 + /1 — a;_1N(0, 1) + V1 — a:N(0,1)
= (Varar_1)xt—2 + /1 — a; + oy — arar_14/BN(0, 1)

= Q@1 - Qpa1Xo + \/1 — a1 - aparN(0, 1)

Haxo+ 1—JJeN(0,1)

—\/>x0+\/1—oztj\/’0 D)
= Vauxo + V1 — age

42

Reverse process: a closer look

Computing the reverse path (reverse denoising distribution) is not,

but we know it is diffusion process.
We train a model to approximate the reverse distribution.

Similar to VAEs, the goal is to maximize a lower bound for the
likelihood:

p(xo:T) }

| >E !
0g p(x0) = Eq(x;.7/x0) [og q(x1:7 | %o)

A lot of effort goes into simplify this lower bound and exploiting
the fact that we are dealing with diffusion process.

43

Reverse process: a closer look

At the end of the day, the model should learn the noise added

Esimple = IE:Xo,t,e “|6 - EG(XD t)“ﬂ

What does it mean? How do we actually do training 7

44

Reverse process: training

Sample an image x¢ and a time step ¢

Sample a random noise ¢.

Get the noise image at time t: x; = /aXg + /1 — Q€
Feed x; to the neural network.

The model’s predicted noise £y should be close to .

Algorithm 1 Training

repeat
X0 ~ q(xo)
t ~ Uniform({1,...,T})
e~ N(0,1)
Take gradient descent step on
Vo ||e — o (v/arxo + MG,t)W

until converged

A

=)

45

Reverse process: image generation

e Start from a noise image x1 ~ N (0, /).

e Feed this to the trained neural network to predict a noise
g(x1)

e Given this predicted noise we can do denoising and obtain
x7_1 (we skipped through the math here)

e Repeat the above until we get to xg.

Algorithm 2 Sampling

XT NN(O,I)
cfort=1T,...,1do
z~N(0,I)ift > 1,elsez=10

_ 1 1l—o¢
Xt-1 = 57 (xt — @EQ(Xt,t)) + otz
end for
return xgo

AR

46

Semantic embeddings + diffusion

Text to image synthesis: Dall-E, Imagen, Stable Diffusion

“A chair that looks like a pineapple” 47

A demo for generating digits by training on MNIST.

% §
o ’ Ly

. .
3 e r "

48

Ethical challenges
How to preserve privacy?

Generative models and data leakage

Generative models can potentially memorise and regenerate their
training data points.

Extracting Training Data from Diffusion Models
Nicholas Carlini*' Jamie Hayes*> Milad Nasr*!
Matthew Jagielskit' Vikash Sehwag** Florian Tramer3
Borja Balle'? Daphne Ippolito™" Eric Wallace'
1Google 2DeepMind 3ETHZ “Princeton SUC Berkeley
*Equal contribution *Equal contribution "Equal contribution

49

Generative models and data leakage

Generative models can potentially memorise and regenerate their
training data points.

Training Set Generated Image

Caption: Living in the light Prompt:
with Ann Graham Lotz Ann Graham Lotz

Figure 1: Diffusion models memorize individual train-
ing examples and generate them at test time. Left: an
image from Stable Diffusion’s training set (licensed CC
BY-SA 3.0, see [49]). Right: a Stable Diffusion gen-
eration when prompted with “Ann Graham Lotz”. The
reconstruction is nearly identical (¢, distance = 0.031).

50

Data leakage

As we saw in the text generation lab, machine learning algorithms
are prone to leak information about their training data:

arm towards the viewer. Gregor then turned to look out the window at

hear the visitor’s first words of greeting and he knew who
calm, “I'll get dressed straight away now, pack up my samples and set off. Will
again, “seven o’clock, and there’s still a fog like this.” And he lay there sighing,
harder than before, if that was possible, he felt that the lower part of his body a

Here, our generative model revealed entire sentences from the
training input. This is a quality issue, but can also be a privacy

issue.

Bl

Data leakage

Many modern ML systems trained on user data.

e Smart Compose in Gmail (trained on user emails).

e Generative Al for medical record taking (trained on patient
health data).

e Github Copilot trained on public and private repositories.

Even if models do not directly generate private data, it can
sometimes be extracted from them.

52

Data leakage

Training data extraction attacks can reconstruct verbatim training
examples e.g., they can extract secrets such as verbatim social
security numbers or passwords.

Extracting Training Data from Large Language Models

Nicholas Carlini' Florian Tramer? Eric Wallace? Matthew Jagielski*
Ariel Herbert-Voss™® Katherine Lee! Adam Roberts' ~ Tom Brown’
Dawn Song? Ulfar Erlingsson’ Alina Oprea* Colin Raffel!

"Google *Stanford 3UC Berkeley *Northeastern University SOpenAl ®Harvard "Apple

Prefix
East Stroudsburg Stroudsburg

Abstract

1t has become common to publish large (billion parameter)
language models that have been trained on private datasets.
This paper demonstrates that in such settings, an adversary can
perform a training data extraction attack to recover individual
training examples by querying the language model.

We demonstrate our attack on GPT-2, a language model
trained on scrapes of the public Intenet, and are able to extract
hundreds of verbatim text sequences from the model’s training
data. These extracted examples include (public) personally
identifiable information (names, phone numbers, and email
addresses), IRC conversations, code, and 128-bit UUIDs. Our
attack is possible even though each of the above sequences
are included in just one document in the training data.

We comprehensively evaluate our extraction attack to un-

Corporation Seabank Centre
Marine Parade Southport

derstand the factors that confribute (0 its success. Worryingly,
we find that larger models are more vulnerable than smaller
‘models. We conclude by drawing lessons and discussing pos- Figure 1: Our extraction attack. Given query access o a
sible safeguards for training large language models. neural network language model, we extract an individual per-

son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
1 Introduction tion that is all accurate so we redact it to protect privacy.

53

The privacy challenge

How do we balance privacy concerns with the desire to train
models on as much data as possible?

54

Formalizing privacy

There have been many many attempts to formalize what it means
for a machine learning algorithm or system to be private.

Calibrating Noise to Sensitivity in Private Data
Analysis

Cynthia Dwork?, Frank MeSherry!, Kobbi Nissim?, and Adam Smith®*
! Microsoft Research, Silicon Valley. {dwork,mcsherry}@microsoft.com

? Ben-Gurion University. kobbi®cs.bgu.ac.il
Weizmann Institute of Seience. adam.smith@ueizmann.ac.il

Differential Privacy has become the gold standard definition.

Clear theoretical founding, widely used in implemented systems
(TensorFlow, US Census statistics, Apple User data, etc.)

55

Differential privacy

Definition based on notation of neighboring datasets.

Definition: A dataset X = [x1,...,X,] is neighbors of a dataset
X' =[xi,...,x}] if:

x; = X for all but one value of i € {1,...n}.

; . . .
le., x; # X; for a single index j.

Alternative but closely related definition: X and X' are
neighbors if X’ can be obtained by adding or removing a single
data point from X.

56

Differential privacy

Definition
An algorithm A satisfies e-differential privacy if, for any two
neighboring datasets X, X’, and any possible output of the

algorithm z,

PrlA(X) = z] < e PrlA(X') = z].

In the context of machine learning, A could be the training
procedure and z could be, e.g., the model weights.

In the context of databases/statistical applications, .A might
implement a simple statistic function like the mean:

n
1
— E 5%
n<

i=1

57

Differential privacy

Definition

An algorithm A satisfies e-differential privacy if, for any two
neighboring datasets X, X’, and any possible output of the
algorithm z, Pr[A(X) = z] < e Pr[A(X') = z].

Think of € as a reasonably small constant. E.g. € € (0,5]. For

small ¢, e€ ~ (1 +¢).

Differential privacy

Definition

An algorithm A satisfies e-differential privacy if, for any two
neighboring datasets X, X’, and any possible output of the
algorithm z, Pr[A(X) = z] < e Pr[A(X') = z].

In words, differential privacy says that including an individuals data
in a dataset X can only increase or decrease the probability of
observing any particular output by a small factor.

Inherently a property of randomized algorithms. Obtaining

differentially private machine learning methods will require adding

randomness to the training process.

59

Differential privacy properties

Postprocessing property: If an algorithm A(X) is e-DP, then
B(A(X)) is e-DP for any (possibly non-private) algorithm 1.

Composition property: If an algorithm A7 is €;-DP and A, is
€>-DP, then B(.Al(X),.Az(X)) is (61 + 62)—DP.

60

Differential privacy

There are many ways to add randomness. Perhaps the most
common is noise injection.

Simple example: Suppose X contains scalar values

X1,...,%, € {0,1}. Suppose we want to compute the average,
Q(X) = % Doy Xi.

Naively, adding or removing a point from the dataset changes the
average by i% with probability 1, so, naively, a mean computation

is not differentially private.

61

Differentially Private Estimate of Q(X) = Y7 x;:

n

e Generate an appropriate random number 7.
e Return Q(X) + 7.

Example = X = {0,1,1,0,0,0}, X’ = {0,1,1,0,1,0}.

Trade-off between privacy and accuracy.

62

What type of noise and how much?

Theorem (Laplace Mechanism)

For a function Q with sensitivity Aq,
A(X) = Q(X) + Lap(Aq/e)

is e-differentially private.

Sensitiviy AQ = MaXpeighboring X, X’ ‘Q(X) = Q(X,)‘
What is Ag for Q(X) = 137 | x?

n

Lap(b) is a Laplacian random variable with parameter b (which
means variance 2b%). PDF is:

1 —|n
po(n) = e VI/®

63

Laplace mechanism analysis

Theorem (Laplace Mechanism)
For a function Q with sensitivity A,
A(X) = Q(X) + Lap(Aq/e) is e-differentially private.

Proof: For any possible output z,

o PrlA(X) =2z] = 2(A2/6)e*|Q(X)*Z\/(AQ/6)
o PrlAX")=2] = 2(A10/€)e*\Q(X')*Z\/(AQ/E)

PrAX) =2] _ _—(ex)-z1-1e(x)~z)/(20/e)
PrlA(X’) =]
1e(X)— (x|
<e Ralt < et

64

What do we pay in terms of accuracy?

Lap(b) has standard deviation v/2b. Like Gaussian distribution,
Laplace random variables usually fall within a few standard
deviations of the mean:

99.7%

95%

68%

65

What do we pay in terms of accuracy?

Lap(b) has standard deviation v/2b. Like Gaussian distribution,
Laplace random variables usually fall within a few standard
deviations of the mean:

©
o

Np
=}

Density
0.3
1

0.2

0.1

66

What do we pay in terms of accuracy?

Standard deviation = /2 - 22
For x1,...,xp € [0,1], @(X) =2 37, x;, we have that:

Overall error from adding noise:

1
° ()
en
Very reasonable if n is large!

E.g., if n=10,000 can get error roughly .001 on mean estimate
with privacy parameter ¢ = .1.

67

What about more complex functions?

In machine learning applications, @ is an entire training procedure,
and the output is vector of parameters.

Q(X,y) = B € R%.
Challenges:

e Very hard to estimate the sensitivity to figure out how much
noise should be added.

e |f some parameters are more sensitive to noise, we could
change the models output drastically.

68

Differentially private (stochastic) gradient descent

Main idea: Typically Q(X,y) is computed by running gradient
descent on a loss function L(3). Instead of directly adding noise to
Q(X,y), add noise at each step of gradient descent.

Basic Gradient descent algorithm:

e Choose starting point B(O).
e Fori=0,...,T:

o B0 = g0 —yvL(?)
e Return ,G(T).

69

Differentially private (stochastic) gradient descent

Typical loss function in machine learning have finite sum structure.

L(B) =D UB.x},)
j=1

By linearity:

VL(B) =Y VUB,x;,))

=

Looks just like our mean estimation problem! Can bound the
contribution of each data example (x;, y;) to the gradient to get a

sensitivity, then add noise.

70

Differentially private (stochastic) gradient descent

Due to a 2016 paper by Martin Abadi, Andy Chu, lan Goodfellow,
H. Brendan McMahan, llya Mironov, Kunal Talwar, Li Zhang.

DP-SGD:

e Choose starting point ﬁ(o).
e Fori=0,...,T:

o g =0 — (VL") +r)
e Return ,@(T).

Above each r; is a random Gaussian vector.

Leading way to incorperate privacy into training machine
learning models. Implented natively, e.g., in TensorFlow.

71

