
CS-GY 6923: Lecture 14

Image Generation, and Privacy Concerns in

ML

NYU Tandon School of Engineering, Akbar Rafiey

1

Recap: Autoencoders learn compressed representations

f (x) = d(e(x)) projects an image x closer to the space of natural

images.

2

Autoencoders for data generation

Suppose we want to generate a random natural image. How might

we do that?

• Option 1: Draw each pixel value in x uniformly at random.

Draws a random image from A.

• Option 2: Draw x randomly from S, the space of images

representable by the autoencoder.

How do we randomly select an image from S?

3

Autoencoders for data generation

Autoencoder approach to generative ML: Feed random inputs

into decoder to produce random realistic outputs.

Main issue: most random inputs will “miss” and produce garbage

results.

4

Autoencoders for data generation

Variational Auto-Encoders (VAEs) attempt to resolve this issue.

5

Variational AutoEncoders (VAEs)

VAEs attempt to resolve this issue. Basic ideas:

• Instead of mapping inputs to a single latent vector, VAEs map

them to a probability distribution in the latent space (e.g., a

Gaussian distribution)

Image from https://www.jeremyjordan.me/variational-autoencoders/

6

https://www.jeremyjordan.me/variational-autoencoders/

Variational AutoEncoders (VAEs)

Basic ideas:

• Suppose there exists some hidden variable z which generates

x .

• Ideally we want to understand p(z | x) (probabilistic encoder)

and p(x | z) (probabilistic decoder)

• We can only see the data. Computing p(z | x) is hard

p(z | x) = p(x | z)p(z)
p(x)

7

Variational AutoEncoders (VAEs)

Basic ideas:

• Let’s approximate p(z | x) using a simpler to understand

distribution q(z | x).

Image from https://www.jeremyjordan.me/variational-autoencoders/

8

https://www.jeremyjordan.me/variational-autoencoders/

Variational AutoEncoders (VAEs)

Basic ideas:

• Let’s approximate p(z | x) using a simpler to understand

distribution q(z | x).
• q(z | x) must have nice properties e.g., it should be as similar

as possible to p(z | x)
• Optimization problem !

Image from https://www.jeremyjordan.me/variational-autoencoders/

9

https://www.jeremyjordan.me/variational-autoencoders/

Kullback–Leibler divergence

KL divergence is a measure of difference between two probability

distributions.

KL(P,Q) =
∑
x

P(x)
log(P(x))

logQ(x)

Back to our optimization problem: q(z | x) and p(z | x) should be

similar

minKL(q(z | x), p(z | x))

Equivalent to:

maxEq(z |x) log(p(x | z))− KL(q(z | x), p(z))

10

VAE objective

Back to our optimization problem: q(z | x) and p(z | x) should be

similar

minKL(q(z | x), p(z | x))

Equivalent to:

maxEq(z |x) log(p(x | z))− KL(q(z | x), p(z))

What is the first term? what is the second term?

11

VAE objective

Back to our optimization problem: q(z | x) and p(z | x) should be

similar

minKL(q(z | x), p(z | x))

Equivalent to:

maxEq(z |x) log(p(x | z))− KL(q(z | x), p(z))

First term: reconstruction likelihood.

Second term: ensures that our learned distribution q is similar to

the true prior distribution p.

12

VAEs: implementation

Have neural networks to learn the mappings q(z | x) and p(x | z).

max
θ,ϕ

Eqϕ(z |x) log(pθ(x | z))− KL(qϕ(z | x), pθ(z))

Assumptions: qϕ(z | x), pθ(x | z), and pθ(z) are Gaussian

distributions.

Image from https://www.jeremyjordan.me/variational-autoencoders/

13

https://www.jeremyjordan.me/variational-autoencoders/

VAEs: implementation

The encoder model of a VAE will output parameters describing a

distribution for each dimension in the latent space.

Assuming Gaussian we only need a mean and a variance for

describing each dimension in the latent space

Image from https://www.jeremyjordan.me/variational-autoencoders/

14

https://www.jeremyjordan.me/variational-autoencoders/

VAEs: implementation

It is not easy to backpropagate the gradient through samples !

Reparameterization technique addresses this issue.

Image from https://www.jeremyjordan.me/variational-autoencoders/

15

https://www.jeremyjordan.me/variational-autoencoders/

VAEs: reparameterization technique

z ∼ qϕ(· | x) is normally distributed, as

N (µϕ(x), σϕ(x))

This can be reparameterized by letting ε ∼ N (0, I), and

constructing z as

z = µϕ(x) + Lϕ(x)ε

Here, σϕ(x) is obtained by the Cholesky decomposition:

σϕ(x) = Lϕ(x)Lϕ(x)T

Then we have

∇ϕEz∼qϕ(·|x)

[
ln

pθ(x , z)
qϕ(z |x)

]
= Eε

[
∇ϕ ln

pθ(x , µϕ(x) + Lϕ(x)ε)
qϕ(µϕ(x) + Lϕ(x)ε|x)

]
and so we obtain an unbiased estimator of the gradient, allowing

stochastic gradient descent.
16

VAEs: reparameterization technique

Since we reparameterized z , we need to find qϕ(z |x). Let q0 be

the probability density function for ε, then

ln qϕ(z |x) = ln q0(ε)− ln |det (J(z , ε))|

Since z = µϕ(x) + Lϕ(x)ε, this becomes

ln qϕ(z |x) = −1

2
∥ε∥2 − ln | det Lϕ(x)| −

n

2
ln(2π)

17

VAEs: reparameterization technique

We can now optimize the parameters of the distribution (unbiased

estimation of the gradient) while still maintaining the ability to

randomly sample from that distribution.

Image from https://www.jeremyjordan.me/variational-autoencoders/

18

https://www.jeremyjordan.me/variational-autoencoders/

Generative Adversarial Networks (GANs)

VAEs give very good results, but tends to produce images with

immediately recognizable flaws (e.g. soft edges, high-frequency

artifacts).

19

Generative Adversarial Networks (GANs)

Lots of efforts to hand-design regularizers that penalize images

that don’t look realistic to the human eye.

Main idea behind GANs: Use machine learning to automatically

encourage realistic looking images.

min
θ

L(θ) + P(θ)

20

Generative Adversarial Networks (GANs)

Let x1, . . . , xn be real images and let z1, . . . , zm be random code vectors.

The goal of the discriminator is to output a number between [0, 1] which

is close to 0 if the image is fake, close to 1 if it’s real.

Train weights of discriminator Dθ to minimize:

min
θ

n∑
i=1

− log (Dθ(xi)) +
m∑
i=1

− log (1− Dθ(Gθ′(zi))
21

Generative Adversarial Networks (GANs)

Goal of the generator Gθ′ is the opposite. We want to maximize:

max
θ′

m∑
i=1

− log (1− Dθ(Gθ′(zi))

This is called an “adversarial loss function”. D is playing the role of the

adversary.
22

Generative Adversarial Networks (GANs)

θ∗,θ′∗ solve min
θ

max
θ′

n∑
i=1

− log (Dθ(xi)) +
m∑
i=1

− log (1− Dθ(Gθ′(zi))

This is called a minimax optimization problem. Really tricky to

solve in practice.

• Repeatedly play: Fix one of θ∗ or θ′∗, train the other to

convergence, repeat.

• Simultaneous gradient descent: Run a single gradient

descent step for each of θ∗,θ′∗ and update D and G

accordingly. Difficult to balance learning rates.

• Lots of tricks (e.g. slight different loss functions) can help.

23

Generative Adversarial Networks (GANs)

State of the art until a few years ago.

24

Quality of generative model

How to evaluate the quality of our model e.g., GAN? What do we

expect from it?

25

Quality of generative model

How to evaluate the quality of our model e.g., GAN? What do we

expect from it?

• The images generated by our model should have variety (e.g.,

each image is a different breed of dog)

• Each image distinctly looks like something (e.g., one image is

clearly a Poodle, the next a great example of a French

Bulldog)

• ...

26

The Inception Score (IS)

Each image distinctly looks like something (e.g., one image is

clearly a Poodle, the next a great example of a French Bulldog)

27

The Inception Score (IS)

The images generated by our model should have variety:

Generate a lot of images (50,000) using the model and sum their

distributions.

28

The Inception Score (IS)

Higher KL divergence, means better score.

Image from

https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a

29

https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a

Diffusion Model

29

Diffusion

Auto-encoder/VAE, GAN approach: Input noise, map directly

to image and vice versa.

Diffusion: Slowly move from noise to image and vice versa.

30

How diffusion models work

• Forward Process:
• Gradually add noise to data until it becomes pure noise.

• Reverse Process:
• Train a neural network to remove the noise step by step.

Key Question: How do we predict and reverse noise effectively?
31

Mathematical Formulation (1/2)

Forward Process (Adding Noise):

q(xt |xt−1) = N (xt ;
√
1− βtxt−1, βtI)

• βt : Noise schedule.

• After T steps, for large enough T , xT is pure noise.

Cumulative Noise:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I)

with retention factor ᾱt =
∏t

s=1(1− βs).

32

Mathematical formulation (2/2)

Reverse Process (Denoising):

pθ(xt−1|xt) = N (xt−1;µθ(xt , t),Σθ(xt , t))

• µθ: Predicted mean of the clean image.

• Σθ: Predicted variance (optional).

Training objective:

Lsimple = Ex0,t,ϵ

[
∥ϵ− ϵθ(xt , t)∥2

]
33

Diffusion models vs VAEs

• Recall the goal of VAE was to have a probabilistic

representation of latent space attributes. This was done in

one shot, from image to Gaussian distributions.

• VAE decoder does the reverse in one shot. Takes Gaussian

noise and returns an image.

• Diffusion model doing more or less the same but with many

careful intermediate noising and denoising steps.

• There are fundamental differences ...

34

Diffusion process

• A diffusion process is a stochastic Markov process having

continuous path

• stochastic Markov process: future state will only depend on

the current state, knowing the past does not change anything

• continuous: no jumps

• Allows to transition from complex distributions to simple

distributions

35

Forward process: a closer look

Forward process: q(xt |xt−1) = N (xt ;
√
1− βtxt−1, βtI)

Why does it converge to a simple distribution ?

Suppose the process is xt = αxt−1 + βN (0, I).

What values of α and β makes sense for the process?

• α = 0, β = 1?

• α ≥ 1, β ≤ 1?

• Seems something like α =
√
0.99, β =

√
0.01 is appropriate.

36

Forward process: a closer look

Let’s check if the following α and β converges:

xt =
√
1− βxt−1 +

√
βN (0, I)

xt =
√
1− βxt−1 +

√
βN (0, I)

=
√

1− β(
√

1− βxt−2 +
√
βN (0, I)) +

√
βN (0, I)

= (
√
1− β)2xt−2 +

√
1− β

√
βN (0, I) +

√
βN (0, I)

37

Forward process: a closer look

Let’s check if the following α and β converges:

xt =
√
1− βxt−1 +

√
βN (0, I)

xt =
√
1− βxt−1 +

√
βN (0, I)

=
√
1− β(

√
1− βxt−2 +

√
βN (0, I)) +

√
βN (0, I)

= (
√
1− β)2xt−2 +

√
1− β

√
βN (0, I) +

√
βN (0, I)

· · ·
= (

√
1− β)txt−t + · · ·+ (

√
1− β)2

√
βN (0, I) +

√
1− β

√
βN (0, I)

+
√
βN (0, I)

38

Forward process: a closer look

xt = (
√
1− β)tx0 + · · ·+ (

√
1− β)2

√
βN (0, I) +

√
1− β

√
βN (0, I)

+
√
βN (0, I)

• for large t, (
√
1− β)t approaches to 0

• each of (
√
1− β)i

√
βN (0, I) is a Gaussian with mean 0 and

variance (1− β)iβ.

• All these Gaussian can be written as one Gaussian distribution

with variance:
t∑

i=0

(1− β)iβ = β
1− (1− β)t

1− (1− β)
∼ β

β
= 1

For large enough t we converge to the Normal distribution N (0, I).

39

Forward process: a closer look

• In practice we do not use a fixed noise β

• Linear schedule noise: β1 = 0.0001 and βT = 0.02

• The number of steps is about 10000 (application dependent),

but this is slow!

• Recall xt =
√
1− βtxt−1 +

√
βtN (0, I).

• Let’s define αt = 1− βt and do the recursive expansion.

40

Forward process: a closer look

xt =
√
1− βtxt−1 +

√
βtN (0, I)

=
√
αtxt−1 +

√
1− αtN (0, I)

=
√
αt(

√
αt−1xt−2 +

√
1− αt−1N (0, I)) +

√
1− αtN (0, I)

= (
√
αtαt−1)xt−2 +

√
1− αt + αt − αtαt−1

√
βN (0, I)

· · ·

41

Forward process: a closer look

xt =
√
1− βtxt−1 +

√
βtN (0, I)

=
√
αtxt−1 +

√
1− αtN (0, I)

=
√
αt(

√
αt−1xt−2 +

√
1− αt−1N (0, I)) +

√
1− αtN (0, I)

= (
√
αtαt−1)xt−2 +

√
1− αt + αt − αtαt−1

√
βN (0, I)

· · ·
=

√
αtαt−1 · · ·α2α1x0 +

√
1− αtαt−1 · · ·α2α1N (0, I)

=

√√√√ t∏
i=1

αix0 +

√√√√1−
t∏

i=1

αiN (0, I)

=
√
ᾱtx0 +

√
1− ᾱtN (0, I)

=
√
ᾱtx0 +

√
1− ᾱtε

42

Reverse process: a closer look

Computing the reverse path (reverse denoising distribution) is not,

but we know it is diffusion process.

We train a model to approximate the reverse distribution.

Similar to VAEs, the goal is to maximize a lower bound for the

likelihood:

log p(x0) ≥ Eq(x1:T |x0)

[
log

p(x0:T)

q(x1:T | x0)

]
A lot of effort goes into simplify this lower bound and exploiting

the fact that we are dealing with diffusion process.

43

Reverse process: a closer look

At the end of the day, the model should learn the noise added

Lsimple = Ex0,t,ϵ

[
∥ϵ− ϵθ(xt , t)∥2

]
What does it mean? How do we actually do training ?

44

Reverse process: training

• Sample an image x0 and a time step t

• Sample a random noise ε.

• Get the noise image at time t: xt =
√
ᾱtx0 +

√
1− ᾱtε

• Feed xt to the neural network.

• The model’s predicted noise εθ should be close to ε.

45

Reverse process: image generation

• Start from a noise image xT ∼ N (0, I).

• Feed this to the trained neural network to predict a noise

εθ(xT)

• Given this predicted noise we can do denoising and obtain

xT−1 (we skipped through the math here)

• Repeat the above until we get to x0.

46

Semantic embeddings + diffusion

Text to image synthesis: Dall-E, Imagen, Stable Diffusion

“A chair that looks like a pineapple” 47

Diffusion

A demo for generating digits by training on MNIST.

48

Ethical challenges

How to preserve privacy?

48

Generative models and data leakage

Generative models can potentially memorise and regenerate their

training data points.

49

Generative models and data leakage

Generative models can potentially memorise and regenerate their

training data points.

50

Data leakage

As we saw in the text generation lab, machine learning algorithms

are prone to leak information about their training data:

Here, our generative model revealed entire sentences from the

training input. This is a quality issue, but can also be a privacy

issue.

51

Data leakage

Many modern ML systems trained on user data.

• Smart Compose in Gmail (trained on user emails).

• Generative AI for medical record taking (trained on patient

health data).

• Github Copilot trained on public and private repositories.

Even if models do not directly generate private data, it can

sometimes be extracted from them.

52

Data leakage

Training data extraction attacks can reconstruct verbatim training

examples e.g., they can extract secrets such as verbatim social

security numbers or passwords.

53

The privacy challenge

How do we balance privacy concerns with the desire to train

models on as much data as possible?

54

Formalizing privacy

There have been many many attempts to formalize what it means

for a machine learning algorithm or system to be private.

Differential Privacy has become the gold standard definition.

Clear theoretical founding, widely used in implemented systems

(TensorFlow, US Census statistics, Apple User data, etc.)

55

Differential privacy

Definition based on notation of neighboring datasets.

Definition: A dataset X = [x1, . . . , xn] is neighbors of a dataset

X′ = [x′1, . . . , x
′
n] if:

xi = x′i for all but one value of i ∈ {1, . . . n}.

I.e., xj ̸= x′j for a single index j .

Alternative but closely related definition: X and X′ are

neighbors if X′ can be obtained by adding or removing a single

data point from X.

56

Differential privacy

Definition

An algorithm A satisfies ϵ-differential privacy if, for any two

neighboring datasets X, X′, and any possible output of the

algorithm z,

Pr[A(X) = z] ≤ eϵ Pr[A(X′) = z].

In the context of machine learning, A could be the training

procedure and z could be, e.g., the model weights.

In the context of databases/statistical applications, A might

implement a simple statistic function like the mean:

1

n

n∑
i=1

xi .

57

Differential privacy

Definition

An algorithm A satisfies ϵ-differential privacy if, for any two

neighboring datasets X, X′, and any possible output of the

algorithm z, Pr[A(X) = z] ≤ eϵ Pr[A(X′) = z].

Think of ϵ as a reasonably small constant. E.g. ϵ ∈ (0, 5]. For

small ϵ, eϵ ≈ (1 + ϵ).

58

Differential privacy

Definition

An algorithm A satisfies ϵ-differential privacy if, for any two

neighboring datasets X, X′, and any possible output of the

algorithm z, Pr[A(X) = z] ≤ eϵ Pr[A(X′) = z].

In words, differential privacy says that including an individuals data

in a dataset X can only increase or decrease the probability of

observing any particular output by a small factor.

Inherently a property of randomized algorithms. Obtaining

differentially private machine learning methods will require adding

randomness to the training process.

59

Differential privacy properties

Postprocessing property: If an algorithm A(X) is ϵ-DP, then

B(A(X)) is ϵ-DP for any (possibly non-private) algorithm B.

Composition property: If an algorithm A1 is ϵ1-DP and A2 is

ϵ2-DP, then B(A1(X),A2(X)) is (ϵ1 + ϵ2)-DP.

60

Differential privacy

There are many ways to add randomness. Perhaps the most

common is noise injection.

Simple example: Suppose X contains scalar values

x1, . . . , xn ∈ {0, 1}. Suppose we want to compute the average,

Q(X) = 1
n

∑n
i=1 xi .

Naively, adding or removing a point from the dataset changes the

average by ± 1
n with probability 1, so, naively, a mean computation

is not differentially private.

61

Noise injection

Differentially Private Estimate of Q(X) = 1
n

∑n
i=1 xi :

• Generate an appropriate random number η.

• Return Q(X) + η.

Example = X = {0, 1, 1, 0, 0, 0},X′ = {0, 1, 1, 0, 1, 0}.

Trade-off between privacy and accuracy.

62

What type of noise and how much?

Theorem (Laplace Mechanism)

For a function Q with sensitivity ∆Q ,

A(X) = Q(X) + Lap(∆Q/ϵ)

is ϵ-differentially private.

Sensitiviy ∆Q = maxneighboring X,X′ |Q(X)− Q(X′)|.

What is ∆Q for Q(X) = 1
n

∑n
i=1 xi?

Lap(b) is a Laplacian random variable with parameter b (which

means variance 2b2). PDF is:

pb(η) =
1

2b
e−|η|/b

63

Laplace mechanism analysis

Theorem (Laplace Mechanism)

For a function Q with sensitivity ∆Q ,

A(X) = Q(X) + Lap(∆Q/ϵ) is ϵ-differentially private.

Proof: For any possible output z ,

• Pr[A(X) = z] = 1
2(∆Q/ϵ)

e−|Q(X)−z|/(∆Q/ϵ)

• Pr[A(X′) = z] = 1
2(∆Q/ϵ)

e−|Q(X′)−z|/(∆Q/ϵ)

Pr[A(X) = z]

Pr[A(X′) = z]
= e−(|Q(X)−z|−|Q(X′)−z|)/(∆Q/ϵ)

≤ e
|Q(X)−Q(X′)|

∆Q/ϵ ≤ eϵ.

64

What do we pay in terms of accuracy?

Lap(b) has standard deviation
√
2b. Like Gaussian distribution,

Laplace random variables usually fall within a few standard

deviations of the mean:

65

What do we pay in terms of accuracy?

Lap(b) has standard deviation
√
2b. Like Gaussian distribution,

Laplace random variables usually fall within a few standard

deviations of the mean:

66

What do we pay in terms of accuracy?

Standard deviation =
√
2 · ∆Q

ϵ .

For x1, . . . , xn ∈ [0, 1], Q(X) = 1
n

∑n
i=1 xi , we have that:

∆Q =
1

n
.

Overall error from adding noise:

O

(
1

ϵn

)
Very reasonable if n is large!

E.g., if n = 10, 000 can get error roughly .001 on mean estimate

with privacy parameter ϵ = .1.

67

What about more complex functions?

In machine learning applications, Q is an entire training procedure,

and the output is vector of parameters.

Q(X, y) → β ∈ Rd .

Challenges:

• Very hard to estimate the sensitivity to figure out how much

noise should be added.

• If some parameters are more sensitive to noise, we could

change the models output drastically.

68

Differentially private (stochastic) gradient descent

Main idea: Typically Q(X, y) is computed by running gradient

descent on a loss function L(β). Instead of directly adding noise to

Q(X, y), add noise at each step of gradient descent.

Basic Gradient descent algorithm:

• Choose starting point β(0).

• For i = 0, . . . ,T :

• β(i+1) = β(i) − η∇L(β(i))

• Return β(T).

69

Differentially private (stochastic) gradient descent

Typical loss function in machine learning have finite sum structure.

L(β) =
n∑

j=1

ℓ(β, xj , yj)

By linearity:

∇L(β) =
n∑

j=1

∇ℓ(β, xj , yj)

Looks just like our mean estimation problem! Can bound the

contribution of each data example (xj , yj) to the gradient to get a

sensitivity, then add noise.

70

Differentially private (stochastic) gradient descent

Due to a 2016 paper by Mart́ın Abadi, Andy Chu, Ian Goodfellow,

H. Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang.

DP-SGD:

• Choose starting point β(0).

• For i = 0, . . . ,T :

• β(i+1) = β(i) − η(∇L(β(i)) + ri)

• Return β(T).

Above each ri is a random Gaussian vector.

Leading way to incorperate privacy into training machine

learning models. Implented natively, e.g., in TensorFlow.

71

